206 research outputs found
Reexamining the Racial Record of Abraham Lincoln
Since his death in 1865 Abraham Lincoln has been universally honored in black America. In many black homes and businesses, his photograph often hangs in honor next to the one of Martin Luther King Jr. But a new book by Ebony editor Lerone Bennett Jr. contends that Lincoln was a crude bigot who told demeaning darky jokes, had an unquenchable thirst for minstrel shows, consistently used the word nigger, and supported efforts to ship Negroes back to Africa.
As Jack E. White pointed out in a recent Time magazine article, this book largely has been ignored by the mainstream press. The book was not reviewed in The Washington Post, The New Yorker, The Chicago Tribune, or USA Today.
JBHE [Journal of Blacks in Higher Education] asked a group of leading Lincoln scholars for their opinions of the Bennett book and the controversy surrounding its publication. Here are the replies
Genomic selection on breeding time in a wild bird population
Abstract Artificial selection experiments are a powerful tool in evolutionary biology. Selecting individuals based on multimarker genotypes (genomic selection) has several advantages over phenotypeâbased selection but has, so far, seen very limited use outside animal and plant breeding. Genomic selection depends on the markers tagging the causal loci that underlie the selected trait. Because the number of necessary markers depends, among other factors, on effective population size, genomic selection may be in practice not feasible in wild populations as most wild populations have much higher effective population sizes than domesticated populations. However, the current possibilities of costâeffective highâthroughput genotyping could overcome this limitation and thereby make it possible to apply genomic selection also in wild populations. Using a unique dataset of about 2000 wild great tits (Parus major), a small passerine bird, genotyped on a 650 k SNP chip we calculated genomic breeding values for eggâlaying date using the soâcalled GBLUP approach. In this approach, the pedigreeâbased relatedness matrix of an âanimal model,â a special form of the mixed model, is replaced by a markerâbased relatedness matrix. Using the markerâbased relatedness matrix, the model seemed better able to disentangle genetic and permanent environmental effects. We calculated the accuracy of genomic breeding values by correlating them to the phenotypes of individuals whose phenotypes were excluded from the analysis when estimating the genomic breeding values. The obtained accuracy was about 0.20, with very little effect of the used genomic relatedness estimator but a strong effect of the number of SNPs. The obtained accuracy is lower than typically seen in domesticated species but considerable for a trait with low heritability (âŒ0.2) as avian breeding time. Our results show that genomic selection is possible also in wild populations with potentially many applications, which we discuss here
Recent natural variability in global warming weakened phenological mismatch and selection on seasonal timing in great tits (<i>Parus major</i>)
Climate change has led to phenological shifts in many species, but with large variation in magnitude among species and trophic levels. The poster child example of the resulting phenological mismatches between the phenology of predators and their prey is the great tit (Parus major), where this mismatch led to directional selection for earlier seasonal breeding. Natural climate variability can obscure the impacts of climate change over certain periods, weakening phenological mismatching and selection. Here, we show that selection on seasonal timing indeed weakened significantly over the past two decades as increases in late spring temperatures have slowed down. Consequently, there has been no further advancement in the date of peak caterpillar food abundance, while great tit phenology has continued to advance, thereby weakening the phenological mismatch. We thus show that the relationships between temperature, phenologies of prey and predator, and selection on predator phenology are robust, also in times of a slowdown of warming. Using projected temperatures from a large ensemble of climate simulations that take natural climate variability into account, we show that prey phenology is again projected to advance faster than great tit phenology in the coming decades, and therefore that long-term global warming will intensify phenological mismatches
Maternal effects in a wild songbird are environmentally plastic but only marginally alter the rate of adaptation
Despite ample evidence for the presence of maternal effects (MEs) in a variety of traits and strong theoretical indications for their evolutionary consequences, empirical evidence to what extent MEs can influence evolutionary responses to selection remains ambiguous. We tested the degree to which MEs can alter the rate of adaptation of a key life-history trait, clutch size, using an individual-based model approach parameterized with experimental data from a long-term study of great tits (Parus major). We modeled two types of MEs: (i) an environmentally plastic ME, in which the relationship between maternal and offspring clutch size depended on the maternal environment via offspring condition, and (ii) a fixed ME, in which this relationship was constant. Although both types of ME affected the rate of adaptation following an abrupt environmental shift, the overall effects were small. We conclude that evolutionary consequences of MEs are modest at best in our study system, at least for the trait and the particular type of ME we considered here. A closer link between theoretical and empirical work on MEs would hence be useful to obtain accurate predictions about the evolutionary consequences of MEs more generally
Challenging claims in the study of migratory birds and climate change
Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support (âconsensus viewâ) for a claim increased and between-researcher variability in support (âexpert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies
Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP).
Wavo spectra were measured along a profile extending 160 km into the North Sea westward from Sylt for a period of ten weeks in 1969. Currents, tides, air-sea temperature differences and turbulence in the atmospheric boundary layer were also measured. the goal of the experiment (described in Part 1) was to determine the structure of the source function governing the energy balance of the wave spectrum, with particular emphasis on wave growth under stationary offshore wind conditions (Part 2) and the attention of swell in water of finito depth (Part 3). The source functions of wave spectra generated by offshore winds exhibit a characteristic plus-minus signature associated with the shift of the sharp spectral peak towards lower frequencies. The two-lobed distribution of the source function can be explained quantitively by the nonlinear transfer due to resonant wave-wave interactions (second order Bragg scattering). The evolution of a pronounced peak and its shift towards lower frequencies can also be understood as a self-stabilizing feature of this process. The decay rates determined for incoming swell varied considerably, but energy attenuation factors of two along the length of the profile were typical. This is in order of magnitude agreement with expected damping rates due to bottom friction. However, the strong tidal modulation predicted by theory for the case of a quadratic bottom friction law was not observed. Adverse winds did not affect the decay rate. Computations also rule out wave-wave interactions or dissipation due to turbulence outside the bottom boundary layer as effective mechanisms of swell attenuation. We conclude that either the generally accepted friction law needs to be significantly modified or that some other mechanism, such as scattering by bottom irregularities, is the cause of the attenuation. The dispersion characteristics of thw swells indicated rather nearby origins, for which the classical DELTA-event model was generally inapplicable. A strong Doppler modulation by tidal currents was also observed. (A
Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird
Shifts in reproductive phenology due to climate change have been well documented in many species but how, within the same species, other annual cycle stages (e.g. moult, migration) shift relative to the timing of breeding has rarely been studied. When stages shift at different rates, the interval between stages may change resulting in overlaps, and as each stage is energetically demanding, these overlaps may have negative fitness consequences. We used long-term data of a population of European pied flycatchers (Ficedula hypoleuca) to investigate phenological shifts in three annual cycle stages: spring migration (arrival dates), breeding (egg-laying and hatching dates) and the onset of postbreeding moult. We found different advancements in the timing of breeding compared with moult (moult advances faster) and no advancement in arrival dates. To understand these differential shifts, we explored which temperatures best explain the year-to-year variation in the timing of these stages, and show that they respond differently to temperature increases in the Netherlands, causing the intervals between arrival and breeding and between breeding and moult to decrease. Next, we tested the fitness consequences of these shortened intervals. We found no effect on clutch size, but the probability of a fledged chick to recruit increased with a shorter arrival-breeding interval (earlier breeding). Finally, mark-recapture analyses did not detect an effect of shortened intervals on adult survival. Our results suggest that the advancement of breeding allows more time for fledgling development, increasing their probability to recruit. This may incur costs to other parts of the annual cycle, but, despite the shorter intervals, there was no effect on adult survival. Our results show that to fully understand the consequences of climate change, it is necessary to look carefully at different annual cycle stages, especially for organisms with complex cycles, such as migratory birds
The copy number variations at genes related to neuronal functions under selection in great tit
The great tit (Parus major) is a well-studied wild bird which has been used as a model species to document the effects of global warming on nature. The recent completion of a reference genome sequence of the great tit and the availability of a high density (HD) 500K SNP-chip, have enabled detailed genomic studies in this species. These genomic tools allowed precise and scalable measures of genetic and non-genetic (i.e. epigenetic marks) variation, identification of SNP variants under selection and copy number variations (CNV)
Recommended from our members
Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora
Background
The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora - South Africa's biodiversity hotspot - through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years.
Results
Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology.
Conclusions
Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record
- âŠ