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Artificial selection experiments are a powerful tool in evolutionary biology. Selecting individuals based on multimarker genotypes

(genomic selection) has several advantages over phenotype-based selection but has, so far, seen very limited use outside animal

and plant breeding. Genomic selection depends on the markers tagging the causal loci that underlie the selected trait. Because the

number of necessary markers depends, among other factors, on effective population size, genomic selection may be in practice not

feasible in wild populations as most wild populations have much higher effective population sizes than domesticated populations.

However, the current possibilities of cost-effective high-throughput genotyping could overcome this limitation and thereby make

it possible to apply genomic selection also in wild populations. Using a unique dataset of about 2000 wild great tits (Parus major), a

small passerine bird, genotyped on a 650 k SNP chip we calculated genomic breeding values for egg-laying date using the so-called

GBLUP approach. In this approach, the pedigree-based relatedness matrix of an “animal model,” a special form of the mixed model,

is replaced by a marker-based relatedness matrix. Using the marker-based relatedness matrix, the model seemed better able to

disentangle genetic and permanent environmental effects. We calculated the accuracy of genomic breeding values by correlating

them to the phenotypes of individuals whose phenotypes were excluded from the analysis when estimating the genomic breeding

values. The obtained accuracy was about 0.20, with very little effect of the used genomic relatedness estimator but a strong effect

of the number of SNPs. The obtained accuracy is lower than typically seen in domesticated species but considerable for a trait with

low heritability (�0.2) as avian breeding time. Our results show that genomic selection is possible also in wild populations with

potentially many applications, which we discuss here.

KEY WORDS: Animal model, GBLUP, genomic breeding values, phenology, quantitative genetic.

Impact summary
Selecting individuals based on their genotypes instead

of their phenotypes is already widely applied in animal

and plant breeding. This “genomic selection” has several

advantages over “traditional” selection based on pheno-

types, for example, individuals can be selected before

they express their phenotype, which can considerably

speed up selection in phenotypes that take a long time

to measure or are difficult to obtain. Selection experi-

ments can be a powerful tool in evolutionary biology

and genomic selection could obviously be useful here.

However, it has so far been unclear whether genomic se-

lection will be feasible in natural populations that differ

in important parameters, for example, effective popula-

tion size, from populations of domestic breeds. We here

explored whether genomic selection worked in a natural

population of great tits (Parus major), a small, com-

mon songbird species. We could show that the accuracy,

an important parameter determining the efficiency of

genomic selection, of “genomic breeding values” for
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egg-laying date in this population was moderate but

lower than typical for animal and plant breeding. De-

spite this reduced accuracy, caused by the high effective

population size of our large great tit study population,

our results show that genomic selection can be possi-

ble in natural populations and we discuss a number of

potential applications next to selection experiments.

Dissecting a trait’s genetic architecture, i.e. how many (and

also which) loci affect the trait and how their effect sizes are

distributed, is important to fully understand and predict its evo-

lution. Quantitative genetics assumes that a trait is determined

by many loci of small effects. This assumption, the infinitesi-

mal model (Barton et al. 2017), allows to model the traits’ ge-

netic (co)variances and its evolutionary change, the response to

selection, based on phenotypic resemblance among individuals

of known relatedness without any molecular genetic informa-

tion. Despite its unrealistic assumptions that, for example, to-

tally ignore gene-by-gene interactions, for which quantitative ge-

netics and the infinitesimal model have been criticized (Nelson

et al. 2013), this framework has been highly successful in animal

and plant breeding (Hill 2012) but also in natural populations

(Charmantier et al. 2014).

The advances in molecular genetic techniques have led to in-

creasing information about the molecular genetic architecture of

traits. Gene mapping studies have been highly successful in map-

ping the genes underlying a variety of traits in humans (Visscher

et al. 2017) but also other traits even in natural populations, as,

for example, bill morphology in Darwin finches (Abzhanov et al.

2004, 2006), defensive armament traits in sticklebacks (Colosimo

et al. 2004) or life-history in salmon (Barson et al. 2015). Such

gene mapping studies have, however, not been universally suc-

cessful. In many cases, the identified causal loci could only ex-

plain a small part of the phenotypic variance (Manolio et al. 2009).

This problem of “missing heritability” is now mostly resolved by

an increasing number of markers included in the analyses (Viss-

cher et al. 2017). The advances in molecular genetic techniques

have now made it possible to undertake gene mapping studies

in wild populations of “nonmodel” species. Unsurprisingly, how-

ever, these studies had limited power and often failed to identify

any locus associated with the analyzed traits (see Supplementary

Table in Gienapp et al. 2017b) indicating that many traits likely

have a polygenic architecture. It hence seems that, despite its

simplistic and not necessarily realistic assumptions (Nelson et al.

2013), the infinitesimal model of classical quantitative genetic

theory is a reasonable approximation for the genetic architecture

of many traits.

Quantitative genetics allows the prediction of individual

“breeding values,” that is the sum of the additive genetic ef-

fects on the trait (Lynch and Walsh 1998; Mrode 2014), which

are commonly used to select individuals in animal breeding but

also allow testing for genetic differentiation, with some caveats

(Hadfield et al. 2010), in space or time in natural populations

(e.g., Garant et al. 2004; Gienapp and Merilä 2014). Quantitative

genetic analysis requires information about relatedness among in-

dividuals, for example, from a pedigree. Establishing a pedigree

from observational field work data is, however, only feasible in

taxa with parental care where individuals can be individually and

uniquely marked at the age when parental care still occurs. This

means that quantitative genetic studies are generally biased toward

certain bird and mammal species (Charmantier et al. 2014). An

alternative, proposed already some time ago (e.g., Ritland 1996),

is to use molecular markers to estimate relatedness among indi-

viduals instead of pedigrees. Early applications of this approach

generally suffered from the limited number of markers that were

available (Coltman 2005; Garant and Kruuk 2005) but using the

currently available high-throughput genotyping in “nonmodel”

species may overcome this problem (Gienapp et al. 2017a).

In domesticated species high-density marker panels have

been available for quite some time. Starting with the influential

paper by Meuwissen et al. (2001) the marker-based prediction of

breeding values, called “genomic selection” or “genomic predic-

tion,” became a very widely accepted and applied tool in animal

and plant breeding (Jannink et al. 2010; Meuwissen et al. 2016).

“Genomic” breeding values (GEBVs), i.e. breeding values pre-

dicted from high-density markers, are generally more accurate

than pedigree-based breeding values (Meuwissen et al. 2016).

Furthermore, GEBVs have the advantage that they allow reason-

ably accurate predictions about the performance of individuals

in the absence of own phenotypes (or offspring phenotypes in

case of traits expressed only in the other sex). Genomic predic-

tion relies on that the markers “tag” a sufficiently large number

of the loci that determine the trait, that is each QTL (quantitative

trait locus) is in linkage disequilibrium with at least one marker.

This means that the accuracy of GEBVs depends, among other

variables, on the number of phenotypic records and the extent

of linkage disequilibrium that can be reflected by the number

of independently segregating chromosome segments (Me) (e.g.,

Goddard 2009; Daetwyler et al. 2010).

The development of the necessary genomic tools for genomic

selection in non-domesticated species has generally been lagging

behind but now high-throughput high-density genotyping has be-

come possible in virtually any species. This potentially widens

the scope of quantitative genetic studies in wild populations by al-

lowing to use marker-based relatedness instead of pedigree-based

relatedness and could enable us also to apply genomic selection in

non-domesticated species (Gienapp et al. 2017a). As pointed out
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above, the accuracy of GEBVs, and hence the feasibility of this

approach, depends on Me, which in turns depends on the effec-

tive population size (Ne) (e.g., Visscher et al. 2006). The effective

population size is, however, generally much larger in natural than

in domestic populations due to, for example, larger population

census sizes, different mating systems and less skewed reproduc-

tive success. This will impair the feasibility of this approach and,

so far, very few studies successfully predicted GEBVs in wild

populations (e.g., Beaulieu et al. 2014).

We here applied genomic selection on seasonal breeding time

in a wild population of great tits (Parus major). Knowledge about

a trait’s genetic architecture is also important to understand and

predict its evolutionary response to selection. Climate change is

generally expected to lead to selection on phenology (Gienapp

et al. 2014) and it has been shown to lead to selection on phe-

nology by disrupting synchrony between trophic levels in great

tits (Visser et al. 1998) and other species (Visser and Both 2005).

Whether populations or species will be able to successfully re-

spond to selection depends, among other factors, on the genetic

variance of the trait under selection (e.g., Lynch and Lande 1993;

Bürger and Lynch 1995; Gienapp et al. 2013a). Avian breeding

time is heritable in great tits (e.g., McCleery et al. 2004; Gienapp

et al. 2006) but it is currently unclear which part of the “physiolog-

ical cascade” underlying this trait varies genetically. By creating

individuals with extreme phenotypes and studying their physiol-

ogy we hope to be able to address this question. To create these

extreme individuals we applied genomic selection in laboratory

selection lines of great tits.

Methods
PHENOTYPES/TRAINING POPULATION

Our “training population,” that is the set of individuals for which

phenotypes and genotypes are recorded, consisted of several long-

term study populations of wild great tits (Parus major) in the

Southern part of the Veluwe area close to Arnhem (52° 00′ N,

5° 50′ E, the Netherlands). These populations are located in close

vicinity (max. distance: 5 km) within a large contiguous woodland

area. Great tits are small passerines that breed in natural cavities

but readily accept artificial nest boxes. In all study populations

nest boxes are supplied in overabundance so that almost all great

tits breed in the supplied nest boxes. Nest-boxes are checked

weekly for signs of nest building and clutch initiation starting in

the beginning of April. When a nest with eggs is found, the date

of the first egg laid (hereafter egg-laying date) is back-calculated

on the assumption that one egg is laid per day. All nestlings are

ringed with standard aluminium bird rings at an age of seven

days. Adults are caught in the nest boxes during the chick feeding

period and identified by their rings or ringed if still unringed. This

allowed the construction of a pedigree based on this observational

data. In the recent decades adults and chicks have also been blood-

sampled at capture. Blood samples were stored in either 1 mL Cell

Lysis Solution (Gentra Puregene Kit, Qiagen, USA) or Queens

buffer (Seutin et al. 1991).

GENOTYPING AND QUALITY CONTROL

A total of 2015 female great tits were genotyped using a custom

made Affymetrix great tit 650K SNP chip (Kim et al. 2018) at Ed-

inburgh Genomics (Edinburgh, United Kingdom). Axiom Analy-

sis Suite 1.1 was used for SNP calling following the Affymetrix

best practices workflow. Total of 32,716 SNPs located on unas-

signed reads, that is without known genomic position, and on the

Z chromosome were excluded. Altogether 503,199 SNPs passed

initial quality control. From these, 248 nonpolymorphic SNPs

were excluded. SNPs were not filtered for Hardy–Weinberg equi-

librium or minor allele frequency.

CALCULATION OF GEBVs

There are two conceptually different ways to calculate genomic

breeding values (GEBVs). In so-called “whole genome regres-

sion” phenotypes are regressed simultaneously against all markers

and the GEBV is calculated as the sum of all estimated marker ef-

fects multiplied with the corresponding genotypes (de los Campos

et al. 2013). However, the fact that the number of estimated pa-

rameters, the marker effects, exceeds the number of observations

prevents the use of “simple” least-squares multiple regression

and instead variable selection or shrinkage estimation procedures

need to be used. Various approaches as, for example, ridge re-

gression (Hoerl and Kennard 1970), LASSO (Tibshirani 1996)

or Bayesian methods with various priors (e.g., Gianola 2013)

have been proposed and used. The other approach is replacing

the pedigree-based relatedness matrix in an animal model by the

marker-based relatedness matrix (VanRaden 2008; Yang et al.

2010), generally known as GBLUP. While conceptually very dif-

ferent, this approach can be shown to be mathematically identical

to ridge regression or a Bayesian approach with a Gaussian distri-

bution of marker effects. Generally, the accuracies of GEBVs that

can be obtained with these different approaches are comparable

(e.g., Hayes et al. 2009a; Daetwyler et al. 2010; Gao et al. 2013).

We here calculated GEBVs using the GBLUP approach. The

marker-based or “genomic” relatedness matrix (GRM) was cal-

culated using the pairwise relatedness estimators of VanRaden

(2008), method 1, and Yang et al. (2010) using the program

calc grm (Calus and Vandenplas 2016). When using the option

VanRaden 1, the GRM is calculated following VanRaden (2008)

as

G = ZZ′

2
∑

pi (1 − pi )

with G being the GRM, Z being a centered matrix of marker

genotypes of all individuals, and pi the frequency of the second
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allele at locus i. Z is calculated from the matrix of marker geno-

types, coded as –1, 0, 1 for the homozygote, heterozygote, and

other homozygote, by subtracting 2(pi – 0.5). Dividing ZZ′ by

2
∑

pi (1 − pi ) scales G to be analogous to the relatedness matrix

obtained from a pedigree.

When using the option Yang, the GRM is calculated follow-

ing Yang et al. (2010) as

G = W W ′

n

with G being the GRM, W being a matrix containing the scaled and

centered marker genotypes and n being the number of markers.

The elements of W are computed as

wi j = xi j − 2pi√
2pi (1 − pi )

with xij being the marker genotype of individual j at locus i.

When a pedigree is known calc grm offers the option to scale

the GRM to the level of inbreeding in the pedigree following

Powell et al. (2010). Finally, the GRM is adjusted for sampling

error in the relatedness due to the limited number of markers

following Yang et al. (2010). We here calculated the GRM with

and without scaling according to the pedigree.

To explore the relative importance of relationship informa-

tion contained in the pedigree and in the genomic relatedness

matrix, we calculated a “weighted” (genomic) relatedness matrix

G∗ as

G∗ = Gα + A(1 − α)

with G being the GRM, A being the pedigree-based relatedness

matrix and α the weighting factor ranging from 0 to 1. Here, we

used values for α of 0.05, 0.5, 0.8, and 0.95.

Because egg-laying date is affected by spring temperature

(e.g., Gienapp et al. 2005) and can also differ among habitats, we

fitted the following model to all recorded egg-laying dates and

used the year and area estimates from this model to “precorrect”

the recorded phenotypes of the genotyped individuals:

yi, j = μ + yr j + ara + agei + indi + ε

with yi,j being the phenotype of individual i in year j, μ the overall

intercept, yrj and ara the fixed effects for year (as factor) and area,

respectively, agei the age of individual i (as factor, 1st year breeder

vs older) and indi the random effect of individual i. We did this,

instead of fitting year and area in our GBLUP model, because

not all individuals in all years were genotyped, which could have

led to biases in the estimates for year-area combinations with few

genotyped individuals.

To estimate variance components and predict the GEBV at

the same time we ran the following mixed model, our GBLUP

model, in ASReml-R:

y′
i, j = μ + agei + pei + ai + ε

with y′
i,j being the pre-corrected phenotype of individual i in

year j, that is y′
i, j = yi, j − ŷr j − âra , agei the age of individual

i, pei the nongenetic (permanent environment) random effect of

individual i, and ai the additive genetic random effect of individual

i. The covariance between the additive genetic effects was given

by the GRM or the weighted GRM (G∗). For comparison, we also

fitted a pedigree-based model where the covariance between the

additive genetic effects was given the pedigree-based relatedness

matrix, while the model was otherwise identical. The scripts to

calculate the GRM and to run the animal model are available as

Supplementary Material.

VALIDATION OF GEBVs

In the “validation” step a subset of individuals that have both

phenotypes and genotypes are excluded from the training popula-

tion, and their precorrected phenotypes (see above) are regressed

against the GEBVs predicted from their genotypes. The correla-

tion between the GEBVs and phenotypes of these individuals is

used to compute the accuracy of the GEBVs, which is defined

as the correlation between the true and the estimated breeding

values. Since the true breeding values are not known, phenotypes

(P) that were precorrected for all fixed effects and averaged per

individual are used instead:

accuracy = cor (P, GEBV)√
h2

where division by
√

h2 corrects for the fact that the maximum cor-

relation between P and GEBV is equal to
√

h2, which is achieved

if the accuracy is 1, that is when GEBV are equal to the true breed-

ing values. To allow comparison of the accuracy obtained using

different numbers of SNPs we used the h2 obtained from the Van-

Raden model with all SNPs for scaling. For this comparison, we

could hence equally well have used the correlation between phe-

notype and GEBV but choose to present the (identically scaled)

accuracies to minimize potential confusion.

Since the standard error of the calculated accuracy depends

on the size of the set of individuals excluded from the train-

ing population (Daetwyler et al. 2013), we followed a modified

“leave-one-out” approach. In this approach each individual is in

turn excluded from the training population, that is in practice its

phenotype is set to missing and the standard GBLUP model is

run. This means that this individual’s GEBV is predicted based

on all phenotypes except its own. To reduce computation time, we

here did not exclude each individual separately from the training

population but instead excluded 20 individuals at once, which
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reduced computation time by a factor 20. We randomly ex-

cluded 20 individuals from the training population, predicted their

GEBVs and then selected the next 20 individuals (each individ-

ual was only excluded once) until all individuals were excluded

once and their GEBVs predicted. When GEBVs for all individ-

uals had been predicted, the GEBVs were correlated with the

individuals’ phenotypes. 95% confidence intervals were obtained

by bootstrapping. The 1000 bootstrap samples were obtained by

randomly drawing—with replacement—2015 observations from

the data. We also report the (approximate) standard errors of the

accuracy and the root mean square error (RMSE) of the GEBVs.

The standard error was based on the sampling variance of a cor-

relation coefficient calculated as the square root of the sampling

variance divided by the square root of the heritability. The RMSE

was calculated as the square root of the mean squared difference

between an individual’s phenotype and its GEBV estimated in-

cluding the individual’s phenotype. The scripts that were used

to run the validation analyses are available as Supplementary

Material.

Since our data are from a natural population, there is some

relatedness structure in the sampled individuals. Out of the 2015

individuals included in the analysis more than half (1520) had

no known relatives within the genotyped individuals. This may

be partly due to parents not being captured but overall capture

rates of breeding adult individuals are at least 90%. Based on

the recorded pedigree information, there were 185 individuals

related as full-sibs, 79 individuals related as maternal half-sibs

and 80 individuals related as paternal half-sibs in the pedigree.

Overall mean pairwise pedigree-based relatedness was 0.00033.

To test the effect of the number of SNPs used to estimate relat-

edness we reran our analysis for subsets of 1000, 50,000, 100,000,

250,000, and 400,000 SNPs. For 100 replicates the corresponding

number of SNPs was sampled randomly from the total number

of SNPs, the GRM calculated using the VanRaden-estimator, and

GEBVs predicted using the approach described above for each

random sample. That is, for the first replicate the phenotypes of

the first 20 individuals were excluded and their GEBVs predicted,

for the second replicate the phenotypes of the next 20 individuals

were excluded and their GEBVs predicted and so forth.

EXPECTED ACCURACY

We also calculated the expected accuracy of the GEBVs, follow-

ing Daetwyler et al. (2010):

rg,ĝ =
√

Nh2

Nh2 + Me

with N being size of the training population, h2 heritability of the

trait, and Me the number of independently segregating genome

Figure 1. Correspondence between pairwise relatedness esti-

mates from the pedigree and SNPs. The genomic relatedness esti-

mated using all SNPs and the vanRaden (2008) estimator (including

pedigree information, see Methods for details) is plotted against

the relatedness estimated from the pedigree information. The dot-

ted line indicates the 1:1 relationship.

segments. We approximated Me using the equation of Goddard

(2009):

Me = 2Ne L

ln(4Ne L)

with Ne being effective population size and L genome length in

Morgans. The total map length in the great tit study population

is 2009.85 cM (van Oers et al. 2014). The effective population

size estimated from pairwise sequential Markovian coalescent

analysis is �5.7 × 105 individuals (Laine et al. 2016). We also

computed Me empirically from our data following Goddard et al.

(2011):

Me = 1

var (G)

with var(G) being the variance across all off-diagonal relation-

ships in the GRM.

Results
The pairwise relatedness estimated from the pedigree and the

GRM corresponded well (Fig. 1). The mean relatedness estimated

from all SNPs, using VanRaden (2008) and scaled according to

the pedigree (see Methods) for individuals with a pedigree re-

latedness of 0.5 (full sibs and parent-offspring pairs) and 0.25

EVOLUTION LETTERS FEBRUARY 2019 5
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Table 1. Estimates (and SE) for the additive genetic (VA), permanent environment (VPE), and residual (Vres) variance component, heri-

tability (h2) of egg-laying date and accuracies of GEBVs from animal models with different relatedness estimators (Yang: following Yang

et al. (2010), VanRaden: following VanRaden (2008), Yang-ped: as Yang but scaled for pedigree, VanRaden-ped, as VanRaden but scaled

for pedigree).

Relatedness
estimator VA h2 VPE Vres Accuracy 95% CI RMSE

Pedigree 5.77 (1.72) 0.24 (0.07) 2.64 (1.71) 15.7 (0.58) 0.197 (0.045) 0.115–0.281 4.723
VanRaden 3.91 (1.31) 0.16 (0.05) 4.48 (1.38) 15.6 (0.58) 0.210 (0.055) 0.105–0.304 4.746
Yang 3.84 (1.31) 0.16 (0.05) 4.55 (1.38) 15.6 (0.58) 0.206 (0.055) 0.097–0.312 4.746
VanRaden-ped 4.00 (1.33) 0.17 (0.06) 4.39 (1.39) 15.6 (0.58) 0.207 (0.054) 0.104–0.304 4.745
Yang-ped 3.94 (1.33) 0.16 (0.06) 4.45 (1.39) 15.6 (0.58) 0.206 (0.055) 0.103–0.303 4.746

The 95% confidence intervals of the accuracy as well as their root mean square error (RMSE) are also given.

Table 2. Estimates (and SE) for the additive genetic (VA), permanent environment (VPE), and residual (Vres) variance component,

heritability (h2) of egg-laying date and accuracies of GEBVs from animal models weighting pedigree and marker-based relatedness

to a different degree.

Alpha VA h2 VPE Vres Accuracy 95% CI RMSE

0.05 5.87 (1.72) 0.24 (0.07) 2.55 (1.71) 15.6 (0.58) 0.199 (0.045) 0.117–0.281 4.723
0.50 5.53 (1.62) 0.23 (0.207) 2.87 (1.62) 15.6 (0.58) 0.207 (0.046) 0.120–0.286 4.731
0.80 4.64 (1.45) 0.19 (0.06) 3.75 (1.49) 15.6 (0.58) 0.209 (0.051) 0.119–0.300 4.739
0.95 4.16 (1.36) 0.17 (0.06) 4.23 (1.42) 15.6 (0.58) 0.209 (0.053) 0.109–0.312 4.744

The 95% confidence intervals of the accuracy as well as their root means square error (RMSE) are also given. A high value for alpha means a high weight for

marker-based relatedness and vice versa.

(half-sibs in our dataset) was 0.49 and 0.22, respectively. A num-

ber of individuals that is unrelated according to the pedigree show

“genomic” relatedness of up to 0.5. We checked these cases of

unexpectedly high relatedness against our extensive data base and

concluded that these could potentially be “missing links” in the

pedigree, i.e. these individuals having a close common ancestor

that is not recorded in the pedigree.

The heritabilities of egg-laying date calculated from the dif-

ferent GRMs were consistently, although not significantly, lower

than the estimate based on pedigree information (Table 1). At the

same time, the permanent environment variance was considerably

lower in the model using pedigree-based relatedness. When the

contribution of the GRM and pedigree to the relatedness estimates

used in the analysis was varied, the results were very similar. The

estimated heritability was highest when most weight was given

to the GRM and decreased with decreasing weight of the GRM

(Table 2).

The accuracies of (pedigree-based) EBVs (Table 1) or of

GEBVs with a strong contribution of the pedigree relative to

the GRM (Table 2) were lower, but not substantially so, than

accuracies based solely on the GRM. Which relatedness estimator,

VanRaden (2008) or Yang et al. (Yang et al. 2010), was used and

whether estimates were scaled by the pedigree had little effect on

the accuracy of GEBVs (Fig. 2, Table 1). The root mean square
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Figure 2. Estimated accuracies (and 95% confidence interval) for

EBVs and GEBVs of egg-laying date for four different estima-

tion methods (ped: pedigree only, vR: vanRaden (2008), Y: Yang

et al. (2010), vR-ped: vanRaden (2008) including the pedigree

in the estimation, Y-ped: Yang et al. (2010) including the pedi-

gree in the estimation). See Methods for details on estimation

procedure.
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errors (RMSEs) gave a slightly different picture with RMSEs

being slightly lower for pedigree-based analyses (Tables 1 and 2).

The accuracy increased with the number of SNPs used to

calculate the GRM (Fig. 3). Using only 1000 SNPs led to a very

low accuracy, also with CIs overlapping with zero. Using 50,000

SNPs led to an improved but still reduced accuracy. Increasing

the number of SNPs to 100,000 improved the accuracy still but

whether 250,000, 400,000 or all SNPs were used made very little

difference.

The predicted accuracy based on a heritability of 0.17, an

effective population size of 570,000 individuals and a genome

size of 20.1 M was much smaller than the empirical accuracy,

namely only 0.017, when Me was calculated from Ne, follow-

ing Goddard (2009) giving a value of 1,298,858. When Me was

calculated empirically from the variation in the relatedness, fol-

lowing Goddard et al. (2011) giving a value of 7230, the pre-

dicted accuracy was 0.21 and thus very close to the empirical

accuracy.

Discussion
Depending on the used relatedness estimator and whether esti-

mates were scaled according to the pedigree the estimated ac-

curacy of GEBVs for egg-laying date varied between 0.197 and

0.210. This is lower than what is normally found in domesticated

species. One study in dairy cattle on a variety of traits found ac-

curacies that ranged from 0.63 to 0.83, with an average of 0.70

(VanRaden et al. 2009). An early review study on dairy cattle

based on considerably smaller training populations of only 332 to

637 individuals still found accuracies of 0.60 on average (Hayes

et al. 2009b). The average accuracy in a large number of studies

on plants, mainly crop species, was ca. 0.60 (reviewed in Lin

et al. 2014). It hence seems that the accuracies estimated here are

smaller than the ones typically found in domesticated animal and

plant species. This is maybe not too surprising as genomic pre-

diction relies on the markers being in linkage disequilibrium with

the loci determining the trait. Effective population sizes of cattle

breeds can be as low as �100 (e.g., de Roos et al. 2008). Due

to the larger effective population sizes of natural populations and

the therefore higher number of independently segregating genome

segments fewer causal loci will be “tagged” by the markers in nat-

ural populations resulting in lower expected accuracy of GEBVs

(e.g., Goddard 2009; Hayes et al. 2009c; Daetwyler et al. 2010).

Another factor determining the accuracy is the number of indi-

viduals in the training population, i.e. the number of individuals

of which both phenotype and genotype are known. For example,

increasing the size of the training population from 1151 to 3576

individuals increased the accuracy of the predicted GEBVs from

0.35 to 0.53 in Holstein dairy cattle (VanRaden et al. 2009). Our

training population of about 2000 individuals was smaller than
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Figure 3. Accuracy of GEBVs (and 95% confidence interval) as

a function of the number of markers used to estimate genomic

relatedness (using VanRaden 2008).

typical datasets from animal and plant breeding, especially recent

studies that have been based on >20,000 genotyped individuals

(e.g., Lin et al. 2014; Schöpke and Swalve 2016). The accuracy

of GEBVs also depends on the trait’s heritability (e.g., Goddard

et al. 2011; Su et al. 2012; Brito et al. 2017), which was 0.24 when

estimated from the pedigree and 0.17 when estimated using the

markers and hence roughly comparable to the traits analyzed in,

for example, VanRaden et al. (2009).

The predicted accuracy of the GEBVs for egg-laying date

was lower than the estimated accuracy and also very low in ab-

solute terms, about 0.01, when estimating Me from the effective

population size in Laine et al. (2016). The factor driving this low

predicted accuracy was the very large effective population size in

great tits, more than half a million (Laine et al. 2016). While there

is very little genetic differentiation between European great tit

populations (Kvist et al. 2003; Laine et al. 2016), this very large

effective population size may still be an overestimate. When we

calculated Me from the variation in genomic relatedness, the pre-

dicted and estimated accuracies corresponded much better (0.21

vs. 0.18). This illustrates that estimating Me from Ne can be chal-

lenging (Brard and Ricard 2015).

Goddard et al. (2011) showed that the number of markers also

affects the accuracy of GEBVs because if the number of markers

is too small the true relatedness at the causal loci will be estimated

too imprecisely. The expected accuracy increased with the number

of SNPs but started to plateau at around 3000 SNPs (Goddard

et al. 2011). This is in line with earlier findings that increasing

the number of SNPs from �10,000 to �38,000 had very little

effect on estimated accuracies in Holstein dairy cattle (VanRaden
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et al. 2009). We used here more than ten times more markers,

502,951 SNPs, which seemed to have “compensated” for the

larger effective population size and the hence increased number

of independently segregating genome segments. We also could

demonstrate the previously expected pattern that the accuracy

plateaued with an increasing number of markers indicating that

the number of markers used here was sufficient (Fig. 3).

The accuracy of the estimated breeding values (EBVs) from

a pedigree-based animal model was very similar to the accura-

cies of GEBVs but the pedigree-based heritability was higher

(Table 1). The effect that using the pedigree rather than the GRM

led to higher heritabilities could also be seen when more weight

was given to the pedigree matrix relative to the GRM in a com-

bined, weighted relatedness matrix (Table 2). One potential reason

for the higher pedigree-based estimate is environmentally caused

similarity among relatives inflating estimates of VA and h2 (van der

Jeugd and McCleery 2002). Animal models have been thought to

suitably account for this potential bias (e.g., Kruuk 2004; Wilson

et al. 2010) but a simulation study showed that not all pedigrees,

including the one of the Hoge Veluwe study population, may be

informative enough to allow this (Gienapp et al. 2013b). The low

relatedness information in the pedigree-based analysis means that

it is difficult for the model to disentangle the genetic and per-

manent environmental effects with too much of the permanent

environment variance being absorbed into the additive genetic

variance and the EBVs. Using genomic instead of pedigree re-

latedness has been shown to improve the ability of the model to

disentangle variances of possibly confounded effects (Lee et al.

2010). Thus, the additional information contained in the GRM

compared to the pedigree may have been able to remove more

of the environmentally caused similarity among relatives, which

would mean that the pedigree-based heritability estimate would

be inflated. However, to ultimately address this, cross-fostering

experiments (e.g., Kruuk and Hadfield 2007) or models directly

fitting the spatial correlation would be necessary (e.g., Stopher

et al. 2012).

While GEBVs have an obvious use in animal and plant breed-

ing, they also have the potential for useful applications in natural

populations. Whether this will be possible and useful obviously

depends on the accuracy of the estimated GEBVs, which will

depend on species- and population-specific parameters, which

determine Ne and Me, and the number of available markers.

Whether these potential constraints prohibit the useful applica-

tions of GEBVs in certain species or populations, requires further

investigation. GEBVs could, for example, be used to select in-

dividuals for assisted migration or release programs. Assisted

migration aims to mitigate negative effects of climate change by

transplanting suitable individuals to new locations that could only

be slowly reached by natural dispersal, that is “assisting” their

dispersal, which has already been used in forest tree management

(Aitken and Whitlock 2013). In breeding programs for endan-

gered species GEBVs could also play a role by helping to identify

individuals that are well adapted to the, potentially altered, release

environments (Griffiths and Pavajeau 2008). Currently, genotyp-

ing is more costly than measuring phenotypes but with dropping

genotyping costs this may change, especially for phenotypes that

are difficult to measure. Even though the variance in estimated

(genomic) breeding values is downward biased in comparison to

the additive genetic variance (e.g., Hadfield et al. 2010) it may

still serve as a useful proxy. Genotyping individuals in newly

studied populations and predicting their GEBVs could allow us to

(roughly) predict the evolutionary potential of these populations

without the need for, potentially very laborious, quantitative ge-

netic studies. Potential limitations of GEBVs for such applications

can, however, arise from Genotype-by-Environment interactions

(G × E) or different genetic trait architectures in different pop-

ulations. G × E is common in many traits (e.g., Pigliucci 2001;

Wood and Brodie 2016), which would mean that the “ranking” of

individual breeding values in different environments can differ. As

a consequence of this, the accuracy of predicting GEBVs across

environments can be substantially reduced. Predicting GEBVs

across populations, while ignoring this in the model, assumes that

the genetic architecture of the trait is identical, that is that the

same loci segregate in both populations. Cross-breed prediction

of GEBVs in domesticated populations has been attempted but

accuracies are much lower than typical within-breed accuracies

(Moghaddar et al. 2014; Hidalgo et al. 2016).

High-density marker panels have been available in animal

and plant breeding and have been used in these fields for consid-

erably longer than in evolutionary ecology to estimate relatedness

from markers or even genomic selection (Gienapp et al. 2017a).

Early approaches aimed at estimating relatedness in natural pop-

ulations from markers failed due to the limited number of mark-

ers available at that time (Coltman 2005; Csilléry et al. 2006),

which is again stressed by our results that about 100,000 SNPs

were necessary to obtain reliable accuracies of GEBVs. More

recently, studies in natural populations of mammals, birds, and

plants successfully estimated additive genetic variances in a num-

ber of traits and were even able to predict GEBVs (Robinson et al.

2013; Stanton-Geddes et al. 2013; Beaulieu et al. 2014; Bérénos

et al. 2014). Consequently, genomic prediction and also marker-

based quantitative genetics could become possible in a wide range

of species, which has the potential to widen our understanding

of evolutionary dynamics in natural populations (Gienapp et al.

2017a).
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