59 research outputs found
The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article
Phylogenomics of non-model ciliates based on transcriptomic analyses
© The Author(s) 2015. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The attached file is the published version of the article
Genetic diversity of Blastocystis in non-primate animals
Blastocystis is an anaerobic protist, commonly inhabiting the intestinal tract of both humans and other animals. Blastocystis is extremely diverse comprising 17 genetically distinct subtypes in mammals and birds. Pathogenicity of this enteric microbe is currently disputed and knowledge regarding its distribution, diversity and zoonotic potential is fragmentary. Most research has focused on Blastocystis from primates, while sampling from other animals remains limited. Herein, we investigated the prevalence and distribution of Blastocystis in animals held within a conservation park in South East England. A total of 118 samples were collected from 27 vertebrate species. The barcoding region of the small-subunit ribosomal RNA was used for molecular identification and subtyping. Forty one per cent of the species were sequence positive for Blastocystis indicating a high prevalence and wide distribution among the animals in the park. Six subtypes were identified, one of which is potentially novel. Moreover, the majority of animals were asymptomatic carriers, suggesting that Blastocystis is not pathogenic in animals. This study provides a thorough investigation of Blastocystis prevalence within a wildlife park in the UK and can be used as a platform for further investigations on the distribution of other eukaryotic gut microbes
Mitochondrial glycolysis in a major lineage of eukaryotes
This is the author accepted manuscript. The final version is freely available from OUP via the DOI in this recordThe establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by the bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.TAW is supported by a Royal Society University Research Fellowship and
NERC grant NE/P00251X/1. Work in the lab of MvdG was supported by Wellcome Trust grant
078566/A/05/Z. PGK wishes to acknowledge support by the German Research Foundation (DFG, grant
KR 1661/6-1) and the Gordon and Betty Moore Foundation GBMF 4966 (grant DiaEdit)
Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages
The Ciliophora is one of the most studied protist lineages because of its important ecological role in the microbial loop. While there is an abundance of molecular data for many ciliate groups, it is commonly limited to the 18S ribosomal RNA locus. There is a paucity of data when it comes to availability of protein-coding genes especially for taxa that do not belong to the class Oligohymenophorea. To address this gap, we have sequenced EST libraries for 11 ciliate species. A supermatrix was constructed for phylogenomic analysis based on 158 genes and 42,158 characters and included 16 ciliates, four dinoflagellates and nine apicomplexans. This is the first multigene-based analysis focusing on the phylum Ciliophora. Our analyses reveal two robust superclades within the Intramacronucleata; one composed of the classes Spirotrichea, Armophorea and Litostomatea (SAL) and another with Colpodea and Oligohymenophorea. Furthermore, we provide corroborative evidence for removing the ambiguous taxon Protocruzia from the class Spirotrichea and placing it as incertae sedis in the phylum Ciliophora
Parasites, drugs and captivity: blastocystis-microbiome associations in captive water voles
(1) Background: Blastocystis is a microbial eukaryote inhabiting the gastrointestinal tract of a broad range of animals including humans. Several studies have shown that the organism is associated with specific microbial profiles and bacterial taxa that have been deemed beneficial to intestinal and overall health. Nonetheless, these studies are focused almost exclusively on humans, while there is no similar information on other animals. (2) Methods: Using a combination of conventional PCR, cloning and sequencing, we investigated presence of Blastocystis along with Giardia and Cryptosporidium in 16 captive water voles sampled twice from a wildlife park. We also characterised their bacterial gut communities. (3) Results: Overall, alpha and beta diversities between water voles with and without Blastocystis did not differ significantly. Differences were noted only on individual taxa with Treponema and Kineothrix being significantly reduced in Blastocystis positive water voles. Grouping according to antiprotozoal treatment and presence of other protists did not reveal any differences in the bacterial community composition either. (4) Conclusion: Unlike human investigations, Blastocystis does not seem to be associated with specific gut microbial profiles in water vole
High Occurrence of Zoonotic Subtypes of Cryptosporidiumparvum in Cypriot Dairy Farms
Cryptosporidium parvum is one of the major causes of neonatal calf diarrhoea resulting in reduced farm productivity and compromised animal welfare worldwide. Livestock act as a major reservoir of this parasite, which can be transmitted to humans directly and/or indirectly, posing a public health risk. Research reports on the prevalence of Cryptosporidium in ruminants from east Mediterranean countries, including Cyprus, are limited. This study is the first to explore the occurrence of Cryptosporidium spp. in cattle up to 24 months old on the island of Cyprus. A total of 242 faecal samples were collected from 10 dairy cattle farms in Cyprus, all of which were screened for Cryptosporidium spp. using nested-PCR amplification targeting the small subunit of the ribosomal RNA (18S rRNA) gene. The 60 kDa glycoprotein (gp60) gene was also sequenced for the samples identified as Cryptosporidium parvum-positive to determine the subtypes present. The occurrence of Cryptosporidium was 43.8% (106/242) with at least one positive isolate in each farm sampled. Cryptosporidium bovis, Cryptosporidium ryanae and C. parvum were the only species identified, while the prevalence per farm ranged from 20–64%. Amongst these, the latter was the predominant species, representing 51.8% of all positive samples, followed by C. bovis (21.7%) and C. ryanae (31.1%). Five C. parvum subtypes were identified, four of which are zoonotic—IIaA14G1R1, IIaA15G1R1, IIaA15G2R1 and IIaA18G2R1. IIaA14G1R1 was the most abundant, representing 48.2% of all C. parvum positive samples, and was also the most widespread. This is the first report of zoonotic subtypes of C. parvum circulating in Cyprus. These results highlight the need for further research into the parasite focusing on its diversity, prevalence, host range and transmission dynamics on the islan
Outline of fungi and fungus-like taxa
This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi.Fil: Wijayawardene, N. N.. Qujing Normal University; ChinaFil: Hyde, K. D.. Mae Fah Luang University; TailandiaFil: Al-Ani, L. K. T.. University of Baghdad; IraqFil: Tedersoo, L.. University of Tartu; EstoniaFil: Haelewaters, D.. University of South Bohemia; República Checa. Purdue University; Estados Unidos. Universidad Autónoma de Chiriquí; PanamáFil: Becerra, Alejandra Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Schnittler, M.. Ernst Moritz Arndt University Greifswald; AlemaniaFil: Shchepin, O. N.. The Komarov Botanical Institute of the Russian Academy of Sciences; RusiaFil: Novozhilov, Y. K.. The Komarov Botanical Institute of the Russian Academy of Sciences; RusiaFil: Silva-Filho, A.G. S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Gentekaki, E.. Mae Fah Luang University; TailandiaFil: Liu, P.. Jilin Agricultural University; ChinaFil: Cavender, J. C.. Ohio University; Estados UnidosFil: Kang, Y.. Guizhou Medical University; ChinaFil: Mohammad, S.. Iranian Research Organization for Science and Technology; IránFil: Zhang, L. F.. Qujing Normal University; ChinaFil: Xu, R. F.. Qujing Normal University; ChinaFil: Li, Y. M.. Qujing Normal University; ChinaFil: Dayarathne, M. C.. Guizhou University; ChinaFil: Ekanayaka, A. H.. Mae Fah Luang University; TailandiaFil: Wen, T. C.. Guizhou University; ChinaFil: Deng, C. Y.. Guizhou Academy of Science; ChinaFil: Pereira, O. L.. Universidade Federal de Viçosa; BrasilFil: Navathe, S.. Agharkar Research Institute; IndiaFil: Hawksworth, D. L.. The Natural History Museum; Reino UnidoFil: Fan, X. L.. Beijing Forestry University; ChinaFil: Dissanayake, L. S.. Guizhou University; ChinaFil: Kuhnert, E.. Leibniz University Hannover; AlemaniaFil: Grossart, H. P.. Leibnitz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Thines, M.. Senckenberg Biodiversity and Climate Research Centre; Alemani
The 2024 Outline of Fungi and fungus-like taxa
With the simultaneous growth in interest from the mycological community to discover fungal species and classify them, there is also an important need to assemble all taxonomic information onto common platforms. Fungal classification is facing a rapidly evolving landscape and organizing genera into an appropriate taxonomic hierarchy is central to better structure a unified classification scheme and avoid incorrect taxonomic inferences. With this in mind, the Outlines of Fungi and fungus-like taxa (2020, 2022) were published as an open-source taxonomic scheme to assist mycologists to better understand the taxonomic position of species within the Fungal Kingdom as well as to improve the accuracy and consistency of our taxonomic language. In this paper, the third contribution to the series of Outline of Fungi and fungus-like taxa prepared by the Global Consortium for the Classification of Fungi and fungus-like taxa is published. The former is updated considering our previous reviews and the taxonomic changes based on recent taxonomic work. In addition, it is more comprehensive and derives more input and consensus from a larger number of mycologists worldwide. Apart from listing the position of a particular genus in a taxonomic level, nearly 1000 notes are provided for newly established genera and higher taxa introduced since 2022. The notes section emphasizes on recent findings with corresponding references, discusses background information to support the current taxonomic status and some controversial taxonomic issues are also highlighted. To elicit maximum taxonomic information, notes/taxa are linked to recognized databases such as Index Fungorum, Faces of Fungi, MycoBank and GenBank, Species Fungorum and others. A new feature includes links to Fungalpedia, offering notes in the Compendium of Fungi and fungus-like Organisms. When specific notes are not provided, links are available to webpages and relevant publications for genera or higher taxa to ease data accessibility. Following the recent synonymization of Caulochytriomycota under Chytridiomycota, with Caulochytriomycetes now classified as a class within the latter, based on formally described and currently accepted data, the Fungi comprises 19 Phyla, 83 classes, 1,220 families, 10,685 genera and ca 140,000 species. Of the genera, 39.5% are monotypic and this begs the question whether mycologists split genera unnecessarily or are we going to find other species in these genera as more parts of the world are surveyed? They are 433 speciose genera with more than 50 species. The document also highlights discussion of some important topics including number of genera categorized as incertae sedis status in higher level fungal classification. The number of species at the higher taxonomic level has always been a contentious issue especially when mycologists consider either a lumping or a splitting approach and herein we provide figures. Herein a summary of updates in the outline of Basidiomycota is provided with discussion on whether there are too many genera of Boletales, Ceratobasidiaceae, and speciose genera such as Colletotrichum. Specific case studies deal with Cortinarius, early diverging fungi, Glomeromycota, a diverse early divergent lineage of symbiotic fungi, Eurotiomycetes, marine fungi, Myxomycetes, Phyllosticta, Hymenochaetaceae and Polyporaceae and the longstanding practice of misapplying intercontinental conspecificity. The outline will aid to better stabilize fungal taxonomy and serves as a necessary tool for mycologists and other scientists interested in the classification of the Fungi
Outline of Fungi and fungus-like taxa
This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi
- …
