50 research outputs found

    Localization of volatile acidity reducing factors in grape

    Get PDF
    Must clarification processes cause an increase in the acetate content of wine at the end of the alcoholic fermatation process, this phenomenon being particularly noticeable when fermentation is obtained by means of the so-called 'high acetate-producer' yeast strains. The influence of different must fractions (free run juice, pressed juice, skins and seeds) on acetate production in white grape was investigated, and the addition of skins and and seeds to a synthetic nutritive medium (MNS) was seen to cause a considerable reduction in acetate production. Strain-related differences become evident when the grape bunch is subjected to heat shock (90°C) before musting. In such conditions, acetate content after fermentation is approximately the same as that of the control specimen (not heat treated) for the low acetate-producer strain (S191c) and higher for the high producer strain (S22b). This suggests the presence of some thermolabile factor that is responsible for inhibiting acetate production. In order to determine the chemical nature of this factor, a series of tests was performed on two substances contained in grape skins and seeds, i.e., polyphenolic compounds and unsaturated fatty acids. A reduction in acetate production was observed in the presence of both substances, their effect being greater when used in connection with high acetate-producer yeast strains

    Linearized stability analysis of gravastars in noncommutative geometry

    Full text link
    In this work, we find exact gravastar solutions in the context of noncommutative geometry, and explore their physical properties and characteristics. The energy density of these geometries is a smeared and particle-like gravitational source, where the mass is diffused throughout a region of linear dimension (α)\sqrt{(\alpha)} due to the intrinsic uncertainty encoded in the coordinate commutator. These solutions are then matched to an exterior Schwarzschild spacetime. We further explore the dynamical stability of the transition layer of these gravastars, for the specific case of ÎČ=M2/α<1.9\beta=M^2/\alpha<1.9, where M is the black hole mass, to linearized spherically symmetric radial perturbations about static equilibrium solutions. It is found that large stability regions exist and, in particular, located sufficiently close to where the event horizon is expected to form.Comment: 6 pages, 3 figure

    Generic thin-shell gravastars

    Full text link
    We construct generic spherically symmetric thin-shell gravastars by using the cut-and-paste procedure. We take considerable effort to make the analysis as general and unified as practicable; investigating both the internal physics of the transition layer and its interaction with "external forces" arising due to interactions between the transition layer and the bulk spacetime. Furthermore, we discuss both the dynamic and static situations. In particular, we consider "bounded excursion" dynamical configurations, and probe the stability of static configurations. For gravastars there is always a particularly compelling configuration in which the surface energy density is zero, while surface tension is nonzero.Comment: V1: 39 pages, 9 figures; V2: 40 pages, 9 figures. References added, some discussion added, some typos fixed. Identical to published version. arXiv admin note: text overlap with arXiv:1112.205

    Quantum gravity phenomenology at the dawn of the multi-messenger era-A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach", is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers. (C) 2022 The Authors. Published by Elsevier B.V.Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Quantum gravity phenomenology at the dawn of the multi-messenger era -- A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5â€Č deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk
    corecore