73 research outputs found

    The Cryogenic System for the LHC Test String 2: Design, Commissioning and Operation

    Get PDF
    A 107-m long superconducting magnet string representing a full-cell of the LHC machine was designed for assembly and commissioning at CERN in order to validate the final design choices. This new facility, thereafter called Test String 2, and its cryogenic infrastructure cons ist of feed and return boxes coupled via transfer lines to a 6 kW @ 4.5 K refrigerator and to a low pressure pumping group, a separate cryogenic distribution line, an electrical feed box with HTS current leads, 2 quadrupole and 6 dipole prototype and pre-series superconducting magnets

    Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward \u3ci\u3eS. aureus\u3c/i\u3e ATCC 25923

    Get PDF
    Excessive antibiotic use in veterinary applications has resulted in water contamination and potentially poses a serious threat to aquatic environments and human health. The objective of the current study was to quantify carbonized leonardite (cLND) adsorption capabilities to remove sulfamethoxazole (SMX)- and enrofloxacin (ENR)-contaminated water and to determine the microbial activity of ENR residuals on cLND following adsorption. The cLND samples prepared at 450oC and 850oC (cLND450 and cLND550, respectively) were evaluated for structural and physical characteristics and adsorption capabilities based on adsorption kinetics and isotherm studies. The low pyrolysis temperature of cLND resulted in a heterogeneous surface that was abundant in both hydrophobic and hydrophilic functional groups. SMX and ENR adsorption were best described using a pseudo-second-order rate expression. The SMX and ENR adsorption equilibrium data on cLND450 and cLND550 revealed their better compliance with a Langmuir isotherm than with four other models based on 2.3-fold higher values of qmENR than qmSMX. Under the presence of the environmental interference, the electrostatic interaction was the main contributing factor to the adsorption capability. Microbial activity experiments based on the growth of Staphylococcus aureus ATCC 25923 revealed that cLND could successfully adsorb and subsequently retain the adsorbed antibiotic on the cLND surface. This study demonstrated the potential of cLND550 as a suitable low-cost adsorbent for the highly efficient removal of antibiotics from water

    Adsorptive–Photocatalytic Performance for Antibiotic and Personal Care Product Using Cu\u3csub\u3e0.5\u3c/sub\u3eMn\u3csub\u3e0.5\u3c/sub\u3eFe\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e

    Get PDF
    The amount of antibiotics and personal care products entering local sewage systems and ultimately natural waters is increasing and raising concerns about long-term human health effects. We developed an adsorptive photocatalyst, Cu0.5Mn0.5Fe2O4 nanoparticles, utilizing co-precipitation and calcination with melamine, and quantified its efficacy in removing paraben and oxytetracycline (OTC). During melamine calcination, Cu0.5Mn0.5Fe2O4 recrystallized, improving material crystallinity and purity for the adsorptive–photocatalytic reaction. Kinetic experiments showed that all four parabens and OTC were removed within 120 and 45 min. We found that contaminant adsorption and reaction with active radicals occurred almost simultaneously with the photocatalyst. OTC adsorption could be adequately described by the Brouers–Sotolongo kinetic and Freundlich isotherm models. OTC photocatalytic degradation started with a series of reactions at different carbon locations (i.e., decarboxamidation, deamination, dehydroxylation, demethylation, and tautomerization). Further toxicity testing showed that Zea mays L. and Vigna radiata L. shoot indexes were less affected by treated water than root indexes. The Zea mays L. endodermis thickness and area decreased considerably after exposure to the 25% (v/v)-treated water. Overall, Cu0.5Mn0.5Fe2O4 nanoparticles exhibit a remarkable adsorptive–photocatalytic performance for the degradation of tested antibiotics and personal care products

    Casein SNP in Norwegian goats: additive and dominance effects on milk composition and quality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The four casein proteins in goat milk are encoded by four closely linked casein loci (<it>CSN1S1</it>, <it>CSN2</it>, <it>CSN1S2 </it>and <it>CSN3</it>) within 250 kb on caprine chromosome 6. A deletion in exon 12 of <it>CSN1S1</it>, so far reported only in Norwegian goats, has been found at high frequency (0.73). Such a high frequency is difficult to explain because the national breeding goal selects against the variant's effect.</p> <p>Methods</p> <p>In this study, 575 goats were genotyped for 38 Single Nucleotide Polymorphisms (SNP) located within the four casein genes. Milk production records of these goats were obtained from the Norwegian Dairy Goat Control. Test-day mixed models with additive and dominance fixed effects of single SNP were fitted in a model including polygenic effects.</p> <p>Results</p> <p>Significant additive effects of single SNP within <it>CSN1S1 </it>and <it>CSN3 </it>were found for fat % and protein %, milk yield and milk taste. The allele with the deletion showed additive and dominance effects on protein % and fat %, and overdominance effects on milk quantity (kg) and lactose %. At its current frequency, the observed dominance (overdominance) effects of the deletion allele reduced its substitution effect (and additive genetic variance available for selection) in the population substantially.</p> <p>Conclusions</p> <p>The selection pressure of conventional breeding on the allele with the deletion is limited due to the observed dominance (overdominance) effects. Inclusion of molecular information in the national breeding scheme will reduce the frequency of this deletion in the population.</p

    Maintaining RNA integrity in a homogeneous population of mammary epithelial cells isolated by Laser Capture Microdissection

    Get PDF
    Background: Laser-capture microdissection (LCM) that enables the isolation of specific cell populations from complex tissues under morphological control is increasingly used for subsequent gene expression studies in cell biology by methods such as real-time quantitative PCR (qPCR), microarrays and most recently by RNA-sequencing. Challenges are i) to select precisely and efficiently cells of interest and ii) to maintain RNA integrity. The mammary gland which is a complex and heterogeneous tissue, consists of multiple cell types, changing in relative proportion during its development and thus hampering gene expression profiling comparison on whole tissue between physiological stages. During lactation, mammary epithelial cells (MEC) are predominant. However several other cell types, including myoepithelial (MMC) and immune cells are present, making it difficult to precisely determine the specificity of gene expression to the cell type of origin. In this work, an optimized reliable procedure for producing RNA from alveolar epithelial cells isolated from frozen histological sections of lactating goat, sheep and cow mammary glands using an infrared-laser based Arcturus Veritas LCM (Applied Biosystems®) system has been developed. The following steps of the microdissection workflow: cryosectioning, staining, dehydration and harvesting of microdissected cells have been carefully considered and designed to ensure cell capture efficiency without compromising RNA integrity.[br/] Results: The best results were obtained when staining 8 μm-thick sections with Cresyl violet® (Ambion, Applied Biosystems®) and capturing microdissected cells during less than 2 hours before RNA extraction. In addition, particular attention was paid to animal preparation before biopsies or slaughtering (milking) and freezing of tissue blocks which were embedded in a cryoprotective compound before being immersed in isopentane. The amount of RNA thus obtained from ca.150 to 250 acini (300,000 to 600,000 μm2) ranges between 5 to 10 ng. RNA integrity number (RIN) was ca. 8.0 and selectivity of this LCM protocol was demonstrated through qPCR analyses for several alveolar cell specific genes, including LALBA (α-lactalbumin) and CSN1S2 (αs2-casein), as well as Krt14 (cytokeratin 14), CD3e and CD68 which are specific markers of MMC, lymphocytes and macrophages, respectively.[br/] Conclusions: RNAs isolated from MEC in this manner were of very good quality for subsequent linear amplification, thus making it possible to establish a referential gene expression profile of the healthy MEC, a useful platform for tumor biomarker discovery

    Hydrological Partitioning in the Critical Zone: Recent Advances and Opportunities for Developing Transferable Understanding of Water Cycle Dynamics

    Get PDF
    Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on ‘‘critical zone hydrology’’ has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: ‘‘how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?’’ Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning
    corecore