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Abstract: The amount of antibiotics and personal care products entering local sewage systems and
ultimately natural waters is increasing and raising concerns about long-term human health effects. We
developed an adsorptive photocatalyst, Cu0.5Mn0.5Fe2O4 nanoparticles, utilizing co-precipitation and
calcination with melamine, and quantified its efficacy in removing paraben and oxytetracycline (OTC).
During melamine calcination, Cu0.5Mn0.5Fe2O4 recrystallized, improving material crystallinity and
purity for the adsorptive–photocatalytic reaction. Kinetic experiments showed that all four parabens
and OTC were removed within 120 and 45 min. We found that contaminant adsorption and reac-
tion with active radicals occurred almost simultaneously with the photocatalyst. OTC adsorption
could be adequately described by the Brouers–Sotolongo kinetic and Freundlich isotherm mod-
els. OTC photocatalytic degradation started with a series of reactions at different carbon locations
(i.e., decarboxamidation, deamination, dehydroxylation, demethylation, and tautomerization). Fur-
ther toxicity testing showed that Zea mays L. and Vigna radiata L. shoot indexes were less affected by
treated water than root indexes. The Zea mays L. endodermis thickness and area decreased consider-
ably after exposure to the 25% (v/v)-treated water. Overall, Cu0.5Mn0.5Fe2O4 nanoparticles exhibit
a remarkable adsorptive–photocatalytic performance for the degradation of tested antibiotics and
personal care products.

Keywords: adsorption–photocatalysis integration; adsorption isotherms; adsorption kinetics;
Cu0.5Mn0.5Fe2O4 nanoparticles; oxytetracycline removal; paraben removal; root anatomical changes;
seed germination

1. Introduction

Pharmaceuticals and personal care products (PPCPs) are substances used for medical,
cosmetics, hygiene, and health care. The increased global production of PPCPs and subse-
quent disposal without environmental controls have negatively impacted some soil–water
environments. While newly developed personal care products are continuously entering
the environment, older, previously disposed PPCPs may also be a concern. Many PPCPs are
non-biodegradable in aerobic environments, especially nitrogen-containing compounds [1].
Because natural PPCP degradation can take several months to years, both parent structure
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and degradation products can still be found in the environment, long after their initial
discharge [2]. Some PPCPs have the capability to be transferred from disposal streams
(i.e., manure amendments, wastewater irrigation, and sludge disposal) to agricultural lands,
crops, and then humans or animal dietary intake [3]. Because of this, human blood, urine,
and breast milk have all recently been found to contain some PPCPs [4,5].

The detection of PPCPs in animals and humans confirms that conventional wastewater
treatment approaches are inadequate. Moreover, trace concentrations of PPCPs can produce
potential adverse effects on human health, aquatic animals, and aquatic ecosystems [6].
Consequently, there is a need for novel water treatment that can effectively reduce PPCPs
while simultaneously removing traditionally encountered organic contaminants. Advanced
oxidation processes (AOPs) are primarily recognized for their strong reactivity and harmless
by-product production [7]. Heterogeneous photo-Fenton-like processes are considered
AOPs and have been previously used in several PPCP treatment [8,9].

The selection of freshly synthesized materials that are reusable and capable of operat-
ing across a broad pH range is vital to the success of remedial technologies. By employing
manganese ferrite (MnFe2O4) as heterogeneous catalysts, researchers have found it to be
more effective than other catalysts. This is due to the various valences in the nanocompos-
ites, including Mn4+, Mn3+, Mn2+, Fe3+, and Fe2+, which can trigger the synergistic action
between the Mn and Fe redox cycles [10,11]. Furthermore, doping manganese ferrite struc-
tures with another transition metal (e.g., Cu) can produce ternary transition metal oxides
(e.g., Cu0.5Mn0.5Fe2O4), which have a greater surface area than iron-based transition metal
catalysts [12,13]. This is beneficial to photo-Fenton-like AOP treatments by providing larger
active sites, an excellent oxygen exchangeability, and an outstanding capability for electron
transfer through the Cu2+/Cu1+ redox cycle. These characteristics facilitate activating
hydrogen peroxide (H2O2) and producing hydroxyl radicals that enhance the degradation
of recalcitrant organic pollutants [12,13]. As such, Cu0.5Mn0.5Fe2O4 had higher catalytic
activity than other single spinel ferrites (e.g., CuFe2O4, MnFe2O4, etc.) in activating H2O2
under ultraviolet (UV) light and was unlikely to cause secondary pollution from metal
leaching due to its high stability [14,15]. In addition, several researchers reported that
Cu0.5Mn0.5Fe2O4 nanoparticles could be successfully used as an adsorbent to remove sev-
eral contaminants from wastewater [12,14,16]. However, an evaluation of the cooperative
impact between the adsorption and photocatalysis of Cu0.5Mn0.5Fe2O4 nanoparticles for
removing PPCPs has never been reported.

In this study, we selected two representatives for PPCPs: (1) oxytetracycline (OTC),
an antibiotic generally used in aquatic veterinary practice, and (2) parabens (e.g., methyl-,
ethyl-, propyl-, and butylparaben), an antimicrobial preservative often used in cosmetic and
care products. Our objective was to determine the adsorptive–photocatalytic degradation
performance of OTC and parabens using Cu0.5Mn0.5Fe2O4 synthesized using a simple
co-precipitation method. The physicochemical properties of Cu0.5Mn0.5Fe2O4 before and
after use were characterized. In the end, we determined any residual toxicity impacts of
the treated water on seed germination, seedling growth, and anatomical root changes for
Zea mays L. and Vigna radiata L.

2. Materials and Methods
2.1. Chemicals

Analytical-grade substances from different sources and deionized water (DI) were em-
ployed in this research. Loba Chemie Pvt. Ltd. (Mumbai, India) supplied manganese sulfate
monohydrate (MnSO4·H2O, 99%). QRëC (Auckland, New Zealand) supplied ferric chloride
hexahydrate (FeCl3·6H2O, >98%) and acetic acid (CH3COOH, 99.8%). Merck (Darmstadt,
Germany) supplied sodium hydroxide (NaOH), hydrogen peroxide (30%, H2O2), cop-
per sulfate (CuSO4, 99%), oxytetracycline dihydrate (C22H24N2O9·2H2O; OTC, ≥99%),
methyl 4-hydroxybenzoate (C8H8O3; methylparaben, MP,≥99%), ethyl 4-hydroxybenzoate
(C9H10O3; ethylparaben, EP, ≥99%), propyl 4-hydroxybenzoate (C10H12O3; propylparaben,
PP, ≥99%), and butyl 4-hydroxybenzoate (C11H14O3; butylparaben, BP, ≥99%). RCI Lab-
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scan (Bangkok, Thailand) supplied acetonitrile (C2H3N; ACN) and methanol (CH3OH;
MeOH). Alfa Aesar (Shanghai, China) supplied melamine (C3H6N6, 99%).

2.2. Synthesis of Cu0.5Mn0.5Fe2O4 Nanoparticles

The Cu0.5Mn0.5Fe2O4 nanoparticles were synthesized via co-precipitation and
melamine-assisted calcination. We mixed 125 mL of CuSO4 (0.2 M), 125 mL of MnSO4·H2O
(0.2 M), 250 mL of FeCl3·6H2O (0.4 M), and 500 mL of DI at 80 ◦C for 1 h. To raise the
pH to 10.5, we gently dripped 8 M NaOH solution into the mixture for 1 h. After stirring
for another hour, we filtered the precipitates by applying vacuum, washed them with DI
water and ethanol multiple times, and dried them at 95 ◦C for 15 h. The dry particles were
blended with melamine in a crucible at a ratio of 2:1. The resulting mixture was subjected
to calcination at a temperature of 550 ◦C for a duration of 3 h, resulting in the production
of the final product.

2.3. Chemical and Material Analyses

Temporal changes in OTC and paraben concentrations were analyzed by
high-performance liquid chromatography (HPLC) using a photodiode array detector (Wa-
ters). With a 20 µL injection volume, an isocratic mobile phase of acetonitrile and 0.1%
(v/v) acetic acid (20:80) was used for OTC analysis, whereas a mobile phase of acetonitrile
and DI (60:40) was used for paraben analysis. Using a flow rate of 1 mL min−1, samples
were separated by a Reversed-Phase 18 (RP-18) Mightysil HPLC column (250 × Ø 4.6 mm)
connected with a guard column. Sample peaks were quantified at 354 nm wavelength for
OTC and 254 nm for four types of parabens (i.e., methyl-, ethyl-, propyl-, and butylparaben,
or MP, EP, PP, and BP) using an external calibration curve.

Morphological structures were analyzed using JEOL (JSM-6010) scanning electron
microscopy and Talos (F200X) high-resolution transmission electron microscopy (HRTEM).
Material crystallinity characteristics were obtained from a D2 Phaser Bruker X-ray diffractor
(XRD), whereas the surface functional groups were acquired from a Bruker (Tensor 27)
Fourier transform infrared spectroscopy (FTIR).

Following the photocatalytic degradation experiments, we used ProElut C18 solid-
phase extraction cartridges (Dikma) to concentrate the OTC degradates prior to further
analyzing them on a liquid chromatography mass spectrophotometer (LC/MS). Initially,
the cartridge was preconditioned with 5 mL of methanol followed by 5 mL of ultrapure
water at a flow rate of 2 mL min−1. A total of 60 mL of samples was introduced into
the cartridge at a flow rate of 5 mL min−1. Then, the samples were eluted with 2 mL of
acetonitrile into the glass test tubes prior to filtrating with a 0.45 µm polytetrafluoroethylene
(PTFE) syringe filter and transferred to vials for LC/MS analysis (Agilent 6420).

An isocratic mobile phase of freshly prepared acetonitrile and 0.1% (v/v) acetic acid
(20:80) was used with a 10 µL injection volume. Using a flow rate of 0.2 mL min−1, samples
were separated by a Mightysil C18 column (250 × Ø 4.6 mm). Mass spectral data were
obtained by scanning the quadrupole from 200 to 500 m/z with a 1 sec scan and a 30 V
cone voltage setting with the following conditions: electrospray ionization source (positive
ion mode), 3.7 kV electrospray voltage, 75 psi nebulization gas pressure, 500 ◦C heater
temperature, and 400 ◦C capillary temperature.

2.4. Varying Dosage of H2O2 or Catalysts

Two independent variables that can affect the photo-Fenton catalytic performance
are H2O2 and catalyst dosage. Here, we varied both parameters (H2O2: 0.1–0.6 mg L−1,
Cu0.5Mn0.5Fe2O4: 0–0.5 g L−1) and determined the temporal changes of OTC and paraben
concentrations. Initially, 100 mL of 0.1 mM OTC was placed in a 250 mL beaker with
a designated catalyst and stirred in the absence of light for 30 min to reach adsorption
equilibrium. Then, the beaker was irradiated with a simulated sunlight source using a
commercial 75-watt halogen lamp. At a preselected time, 1 mL of sample was filtered
through a 0.45 µm PTFE syringe filter. To stop the reaction, 0.7 mL of filtrated sample was
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transferred to an HPLC vial containing 0.875 mL of methanol. Samples were then stored in
a refrigerator at 4 ◦C until HPLC analysis.

2.5. OTC Adsorption Study
2.5.1. Adsorption Kinetics

The OTC solution was freshly prepared before use in the kinetic and isotherm experi-
ments. A total of 30 mL of 0.1 mM OTC concentrations was placed in a 40 mL amber vial.
We selected 6 mg, 12 mg, and 18 mg of Cu0.5Mn0.5Fe2O4 as adsorbents in this kinetic study
(equivalent to 0.2, 0.4, and 0.6 g L−1). The experiments were performed in quadruplicate.
The experiment started once the adsorbent had been added. Vials were shaken on a recip-
rocating shaker at 200 rpm. A total of 0.75 mL of samples was collected at 0.5, 1, 2, 3, 4, 5,
and 6 h and filtrated using a 0.45 µM PTFE syringe filter. Samples were kept at 4 ◦C until
HPLC analysis.

The kinetic models used in this study were pseudo first-order, pseudo second-order,
Elovich, Brouers–Sotolongo (order 2), and intra-particle diffusion (2 phases) kinetic models
(Table 1). The parameters in these models were determined by least squares approximation.
In other words, the model used the parameter values that yielded the lowest sum of squared
error (SSE) between observed and modeled values (Equation (1)).

SSE =
n

∑
i=1

(yi − ŷi)
2 (1)

where n is the count of data, yi is the value of i the observed data (observed amount of
adsorbed OTC), and ŷi is the value of i modelled data (calculated amount of adsorbed
OTC). For each kinetic model, the values of parameters that gave the lowest SSE were
determined by a generalized reduced gradient (GRG) algorithm [17] with multiple starting
points. The GRG algorithm was performed by the Solver add-in in Microsoft Excel.

2.5.2. Adsorption Isotherms

Three amounts of Cu0.5Mn0.5Fe2O4 (6, 12, and 18 mg) were selected for the adsorption
isotherm study (equivalent to 0.2, 0.4, and 0.6 g L−1). The OTC concentrations, which
ranged from 0.005, 0.01, 0.025, 0.05, 0.75, 0.1, 0.15, and 0.2 mM, were placed in each vial.
The experimental set-up and sample collecting protocol were similar to the adsorption
kinetic experiment.

2.5.3. Isotherm Models

This study employed multiple isotherm models (Table 1). However, in this study, the
values of parameters cannot be clearly determined for some models. Only the models that
give clear values of parameters were selectively reported. These models include Langmuir,
Freundlich, and Temkin isotherm models. Since these models can be transformed into linear
forms (Equations (2)–(4) for Langmuir, Freundlich, and Temkin isotherm models, respec-
tively), the parameters in these models were determined by least squares linear regression.

1
qe

=
1

qmb

(
1

Ce

)
+

1
qm

(2)

ln qe =
1
n
(ln Ce) + ln K f (3)

qe =
RT
BT

(lnCe) +
RT
BT

(lnAT) (4)

From the linearized Langmuir isotherm model (Equation (2)), the value of 1/(qmb)
was the slope of the linear relationship between 1/Ce (independent variable) and 1/qe
(dependent variable), and the value of 1/qm was the y-intercept of that linear relationship.
By using a similar approach, the values of K f and n in the Freundlich isotherm model
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(Equation (3)) and the values of AT and BT in the Temkin isotherm model (Equation (4))
could be determined.

Table 1. Kinetic and isotherm models used in this study.

Model Equation Ref. Nomenclature

Kinetic Model
AKC : Koble–Corrigan parameter (LnKC mg1−nKC g–1)
AT : Temkin equilibrium binding parameter (L mol–1)
BDR: Dubinin-Radushkevich constant (mol2 J–2)
BKC : Koble–Corrigan parameter (

(
Lmg–1)nKC )

BT : Temkin constant (J mol–1)
b: Langmuir energy constant (L mg–1)
bK : Khan model constant (L mg–1)
C: constant for intra-particle diffusion kinetic model
(mg g–1)
Ce: OTC concentration at equilibrium (mg L–1)
KBS: Brouers–Sotolongo isotherm constant (L mg–1)
Kd: coefficient for intra–particle diffusion kinetic model
(mg g–1 h–1/2)
K f : Freundlich constant (mg g–1(L mg–1)1/n)

KH : Hill constant
(

mgL−1
)nH

Kj: Jovanovich constant (L mg–1)
KRP: Redlich–Peterson isotherm constant (L g–1)
KT : Toth model constant (L mg–1)
k1: rate constant for pseudo first-order kinetic model (h–1)
k2: rate constant for pseudo second-order kinetic model
(g mg–1 h–1)
1/n: Freundlich adsorption intensity
nKC : Koble–Corrigan parameter
nH : Hill cooperativity coefficient
nr : non-integer reaction order
nT : Toth model exponent
qe: amount of OTC adsorbed at equilibrium (mg g–1)
qm: maximum amount of the adsorbate per unit weight
of the adsorbent (mg g–1)
qt: amount of OTC adsorbed at time t (mg g–1)
R: universal gas constant (8.314 J K–1 mol–1)
T: temperature (298 K)
t: adsorption time (h)
α: Elovich chemisorption rate (mg g–1 h–1)
αbs: Brouers–Sotolongo model exponent

αRP: Redlich–Peterson isotherm constant (
(
Lmg−1)βRP )

αK : Khan model exponent
β: Elovich desorption rate constant (g mg–1)
βRP: Redlich–Peterson model exponent
γ: fractal time exponent
τ: characteristic time (h)

Pseudo
first-order

qt = qe
(
1− e−k1t) [18]

Pseudo
second-order

qt =
q2

e k2t
qek2t+1 [18]

Elovich qt =
1
β ln(αβt) [18]

Brouers-
Sotolongo

qt = qe

(
1−

(
1 + (nr − 1)

( t
τ

)γ
) −1

nr−1

)
[19]

Intra-particle
diffusion

qt = Kdt1/2 + C [18]

Isotherm model

Langmuir qe =
qmbCe
1+bCe

[18]

Freundlich qe = K f C1/n
e [18]

Temkin qe =
RT
BT

ln(ATCe) [18]

Dubinin-
Radushkevich

qe = qme−(BDRε2)

ε = RTln
(

1 + 1
Ce

) [18]

Jovanovic qe = qm

(
1− e−KjCe

)
[18]

Koble-Corrigan qe =
AKC BKCC

nKC
e

1+BKCC
nKC
e

[19]

Khan qe =
qmbK Ce

(1+bK Ce)
αK [19]

Hill qe =
qmC

nH
e

KH+C
nH
e

[19]

Brouers-
Sotolongo

qe = qm

(
1− e−KBSC

αbs
e
)

[19]

Toth qe =
qmKT Ce

(1+(KT Ce)
nT )

1
nT

[19]

Redlich-Peterson qe =
KRPCe

1+αRPC
βRP
e

[19]

2.5.4. Model Evaluation

In this study, the kinetic and isotherm models were evaluated by root mean square
error (RMSE) and coefficient of determination (R2) (Equations (5) and (6)).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (6)

where RMSE is the root mean square error, n is the count of data, yi is the value of i th
observed data, ŷi is the value of i th modelled data, R2 is the coefficient of determination,
and y is the average value of the observed data. A low RMSE and high R2 indicate that
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the model is suitable. Conversely, a high RMSE and low R2 indicate that the model is not
suitable [20].

Since the isotherm models were parameterized by least squares linear regression, the
strengths of the linear relationships were also measured using squared Pearson correlation
coefficients (r2) (Equation (7)). Moreover, the adjustment of r2 according to the count of
predictor(s) was also performed (Equation (8)) [21].

r2 =
(∑n

i=1 (xi − x)(yi − y))2

∑n
i=1 (xi − x)2∑n

i=1(yi − y)2 (7)

r2
adj = 1−

(
1− r2)(n− 1)
(n− p− 1)

(8)

where r2 is the squared Pearson correlation coefficient, n is the count of data, xi is the value
of i th independent variable, x is the average value of the independent variable, yi is the
value of i th dependent variable, y is the average value of the dependent variable, r2

adj is

the r2 adjusted according to the count of predictor(s), and p is the count of predictor(s).

2.6. Evaluating Effects of Treated Water on Seed Germination and Root Anatomy

Due to their prevalence in Thai agriculture, Zea mays L. and Vigna radiata L. were
used as representative species (monocotyledon vs. dicotyledon) for assessing the effects of
treated water on seedling development and root morphological features. Zea mays L. seeds
(cv.SW5720, National Corn and Sorghum Research Center, Nakhon Ratchasima, Thailand)
and Vigna radiata L. seeds (cv.KUML4, Department of Agronomy, Faculty of Agriculture
at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand) were selected for
this purpose. The OTC-untreated and treated water were assigned in two separate studies
with varying percentages of OTC solution (5 to 15% and 25 to 50%). Fifty seeds from each
treatment were planted in a box (19 × 28 × 11 cm) containing 2.55 kg of sand and 450 mL
of three previously described waters and incubated at 25 ºC. Each treatment was repeated
four times and arranged in a completely random design (CRD). In order to evaluate the
vigor and physiological performance of the seeds, the length of the shoots (the length
from ground level to the tip of the longest leaf) and roots (the length from the base of the
stem to the end of the longest root) were measured 7 d after planting (Zea mays L.) or 8 d
(Vigna radiata L.). Normal seedlings’ shoots and roots were weighed in mg (per plant)
after drying in a hot-air oven at 80 ◦C for 24 h. All the obtained data were statistically
evaluated. The mean germination time (MGT) and vigor index (VI) were calculated using
the following formulas (Equations (9) and (10)):

MGT(days) = ∑(n ∗ d)
N

(9)

VI = Final germination(%)× Seedling dry weight (10)

where n is number of seeds germinated on each day, d is number of days from germination,
and N is total number of germinated seeds.

Because Zea mays L. and Vigna radiata L. roots exhibited varying degrees of sensitivity
to the constituents present in the treated water, leading to alterations in key anatomical
features, their anatomical studies provided valuable insights into the potential physio-
logical and developmental impacts of treated water on root tissues. We investigated the
effect of treated water on root anatomy, focusing on parameters such as endodermis thick-
ness, endodermis area, vascular cylinder diameter, metaxylem area, and cortex. These
anatomical parameters are responsible for water and nutrient uptake, anchoring the plant,
and providing structural support. Three roots per treatment per replication were anatomi-
cally analyzed.
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The roots were immersed for 2 days in the FAA fixative solution (i.e., formalin
(10%)/glacial acetic acid (5%)/ethanol (50%)/DI water (35%)). A table microtome and
free-hand sectioning were used to generate cross sections at 4 ± 0.5 cm from the root apex
to study Zea mays L. and Vigna radiata L. root anatomy. The slices were dyed with a 1%
safranin-O dye solution for 2 min, mounted on glass slides with 50% glycerin, and then
inspected and photographed using a light microscope coupled with Zen 3.5 software (Carl
Zeiss, Axio lmage 2, Oberkochen, Germany). Tukey’s honest significant difference (HSD)
was used to compare treatment means at p = 0.05.

3. Results and Discussion
3.1. Cu0.5Mn0.5Fe2O4 Characteristics

The SEM images of Cu0.5Mn0.5Fe2O4 exhibited a rough, uneven, and porous network
structure caused by smaller particles that were well-distributed among larger particles,
evidencing the flawless melamine-assisted calcination (Figure 1A,B). The TEM images
depict the arrangement of large octahedral shapes surrounded by smaller particle sizes
(Figure 1C,D). It is obvious that the morphological characteristics of the material were
consistent with those observed through SEM. The HRTEM images also showed lattice
fringes of 0.25 nm corresponding to the (311) plane (Figure 1D). In addition, the magnetic
properties were more pronounced in comparison to the catalyst that was prepared without
melamine addition. This was attributed to the recrystallization process that occurred during
the calcination stage with melamine, which served as a coordinating agent. It was confirmed
that melamine provided a platform and coordinated with the co-precipitated particles
during calcination, resulting in promoting the Cu0.5Mn0.5Fe2O4 formation without impurity
and providing a carbon source for the M-C and C-C/C=C bonds forming a heterojunction
structure with Cu0.5Mn0.5Fe2O4 [12] (Figure 1E–G). Like carbon-based material doping,
these carbons could act as an electron acceptor by suppressing photo-excited electron–
hole recombination and enhancing the light absorption capability, thereby improving
Cu0.5Mn0.5Fe2O4 photocatalytic activity [22,23]. This ultimately facilitated the formation of
a ferrite structure without the α-Fe2O3 impurities [12].
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Figure 1. Cu0.5Mn0.5Fe2O4 nanoparticle characteristics: (A,B) SEM images; (C) TEM image with
a visual observation of particles; (D) HRTEM image. The nanoparticle before and after use in
photocatalytic reaction: (E) XRD patterns; (F) FTIR spectra; and (G) C 1s XPS spectra.

While the XRD spectra of both materials (before and after use in adsorptive–photocatal-
ytic activity) show similar diffraction peaks at 2θ values of 18.3◦, 30.0◦, 35.4◦, 37.0◦, 43.0◦,
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53.3◦, 56.8◦, and 62.4◦ corresponding to the diffraction crystal planes (111), (220), (311),
(222), (400), (422), (511), and (440), the unused materials had a slightly higher peak intensity
(Figure 1E). This indicates that the occupying of adsorption sites may have occurred, but
the crystallinity was still intact, which would still be able to provide a great photocat-
alytic performance.

The strong vibration spectra in the low wavenumber region (450 to 700 cm−1) were
assigned to the M–O band (M=Cu, Mn, and Fe) (Figure 1F). These bands confirmed the for-
mation of M–O bonds at octahedral sites (Cu2+–O2−, and Mn2+–O2− stretching vibration)
and tetrahedral sites (Fe3+–O2− stretching vibration) of the Cu0.5Mn0.5Fe2O4 nanocom-
posite surface [13,24–26]. These surface metals play an important role in heterogeneous
catalytic reactions. The peaks at 1150, 1530, 1640, and ~3000 cm−1 can be attributed to C-O,
C=O, C=C, and sp2 (–CH) or sp3 (=CH) hybridized carbon atoms (Figure 1F) [25,27,28].
The XPS analysis of the C 1s spectra indicates that the peaks at 282.8 and 283.8 eV corre-
sponded to M-C bonds, while the other peaks at 284.9, 286.3, and 288.4 eV were attributed
to C-C/C=C, C-O, and O=C-O (Figure 1G) [25,29]. It also reveals that, after use, C-C
and C=C were decreased, while C-O and C=O were increased, indicating that the surface
carbons undergo partial oxidation by the active oxygen species or exhibit involvement in
the catalytic reaction.

Furthermore, despite the fact that the addition of melamine would result in C–N
containing peaks that would aid in the crystal reformation, we did not see such peaks in
XRD, FTIR, or XPS analyses. This may be explained by the role of melamine during the
calcination stage. Upon heating melamine with the co-precipitated particles, a platform
for the distribution of nanoparticles was created. This process was coordinated with the
transition metals, leading to the formation of a metal–melamine complex [30,31]. At a high
calcination temperature of 550 ◦C, this compound can undergo further decomposition,
resulting in the formation of a spinel ferrite structure and the release of volatile gases
(i.e., COX, NOX, and NH3) [32]. The findings validate the function of melamine as a
coordinating agent that effectively enhances the crystalline structure of Cu0.5Mn0.5Fe2O4
and successfully eliminates the presence of Fe2O3 impurities.

3.2. Photocatalytic Performance
3.2.1. Paraben Degradation Efficiency

A photocatalytic experiment revealed that a >95% paraben degradation efficiency
was obtained in 120 min (Figure 2). We did not observe a significant change in the first
30 min in the dark, indicating that the adsorption–desorption equilibrium of catalysts
had been reached. The insignificant difference between parabens in the first 30 min of
light-irradiation was probably due to the insufficient energy for initiating active oxygen
species production. The temporal monitoring of each paraben concentration revealed a
rise in the observed pseudo first-order rate constant (kobs), and %removal at 120 min in
the order BP > PP > EP > MP (inset of Figure 2), which was due to the generated •OH,
photoelectron (e−), and •O2

−, confirmed by our previously proposed radical formation
mechanisms in our recent publication by Angkaew et al. [12], which was similarly observed
by other works [33,34]. The BP highest degradation efficiency was due to the BP molecular
structure with a longer ester chain and the existence of more unsaturated C=C bonds, both
of which were preferentially targeted by •OH and •O2

− [35,36]. These results validate
the occurrence of the reaction with •OH in a correlation with the alkyl chain length of the
paraben [37].
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Figure 2. Temporal changes in paraben concentration (i.e., methyl-, ethyl-, propyl-, and butylparaben,
or MP, EP, PP, and BP) under the adsorptive–photocatalysis process; (inset graph) removal efficiency
(at 120 min) and observed degradation rates of parabens (kobs; min−1).

When the photocatalytic activity was tested by removing parabens individually at
different H2O2 concentrations and Cu0.5Mn0.5Fe2O4 dosages, the BP degradation rates
were again the fastest, confirming that its molecular structure is more susceptible to ox-
idative species (Figure 3). The degradation rate exhibited a corresponding increase with
the increase in catalyst doses. The degradation rate did not, however, rise by 2.5 times as
expected in response to the increase in catalyst dosage, but rather by 1.25 times. Never-
theless, the larger specific area was responsible for this increase because it provided more
adsorptive and reactive sites for the H2O2 that was present, accelerating the production of
reactive species (Figure 3).
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Figure 3. Temporal changes in paraben concentration (i.e., methyl-, ethyl-, propyl-, and butylparaben)
under three different oxidative conditions; (inset graph) adsorption removal of each paraben in the
absence of light irradiation.

It is noted that, in the dark, BP was also adsorbed, even though there was no pho-
toactivity involved (Figure 3). Up to a 40% increase in paraben removal efficiency was
observed following an increase in the Cu0.5Mn0.5Fe2O4 dose to 0.5 g L−1. This proves that,
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besides photocatalytic activity, the availability of adsorption sites and a contact surface
area also increased. However, Hashemian, et al. [16] reported that, when the quantity of
adsorbent exceeds 1.0 g, the increase in removal of pollutants can become negligible due to
the occurrence of particle–particle interactions, such as aggregation, which subsequently
diminish the available surface area for adsorption sites, and that the adsorption efficiency
may play a synergistic important role in this oxidative system.

3.2.2. Oxytetracycline (OTC) Degradation Efficiency

The results of lowering H2O2 and catalyst dosages more than the previous experiment
show that the increase in these dosages did not necessarily increase the OTC degradation
efficiency (Figure 4). The increase in H2O2 resulted in a better photocatalytic activity, except
for the H2O2 doses of 0.4 mL and 0.6 mL, which had a similar degradation efficiency
(Figure 4A). This could have been a lack of active sites for the catalyst dose to initiate the
reaction. One other possible explanation is that the created •OH was quenched by the
self-scavenging action of the abundant H2O2, which itself deteriorated into H2O and O2
(Equations (11)–(13)) [10,29].

H2O2 + H2O2 → H2O + O2 (11)

H2O2 + •OH→ HO2
• + H2O (12)

HO2
• + •OH→ O2 + H2O (13)
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Increases in the Cu0.5Mn0.5Fe2O4 dosage had a similar effect on OTC degradation
efficiency as increases in the H2O2 concentration did (Figure 4B). Besides the lack of H2O2
concentration for initiating the reaction, a self-scavenging effect may have occurred from
the excessive amounts of Cu+, Fe2+, and Mn2+ in the solution (Equations (14)–(16)) [25,38].

Cu+ + •OH→ Cu2+ + OH− (14)

Mn2+ + •OH→Mn3+ + OH− (15)
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Fe2+ + •OH→ Fe3+ + OH− (16)

Moreover, an excessive amount of suspended catalysts might prevent light from
reaching the reaction sites, reducing the amount of •OH produced. Notably, the re-
moval efficiency anomaly (>10%) in the dark was observed for the highest catalyst dose
(0.4 g L−1) (Figure 4B). This phenomenon indicates the existence of catalyst adsorptivity
prior to the generation of active radicals and that some contaminants may have been ad-
sorbed on the catalyst surface. As a result, we ruled out the idea that adsorption was also a
key factor in pollution removal. This information is valuable as it pertains to the potential
utilization of greater quantities of catalyst in practical applications.

3.3. Adsorptive Performance

At the beginning of the adsorption experiment, a high adsorption rate was seen for all
three chosen amounts. This indicates that the catalyst was a viable adsorbent and that there
were plenty of adsorption sites accessible, especially as the adsorbent amount increased.
This might be attributed to our selected synthesis approaches that used melamine-assisted
calcination, which resulted in its octahedral morphology surrounded by tiny spheres. Thus,
this is advantageous for both excellent adsorption and excellent photocatalytic properties.

In this study, pseudo first-order, pseudo second-order, Elovich, and Brouers–Sotolongo
models were used to explain adsorption, and two-phase intra-particle diffusion was used to
explain diffusion (Table 1). RMSE and R2 values were used to determine the best fit model.

Figure 5A shows the plot of the fitted adsorption models (pseudo first-order, pseudo
second-order, Elovich, and Brouers–Sotolongo models). Differences among results from
these models can be seen when the Cu0.5Mn0.5Fe2O4 amount is not very high. Overall,
both the Brouers–Sotolongo and the pseudo second-order kinetic models described the
OTC-Cu0.5Mn0.5Fe2O4 adsorption kinetics well, as indicated by the low RMSE and high R2

(Table 2). Therefore, it can be concluded that the adsorption process between the adsorbent
and OTC molecules in the liquid phase was a chemisorption process, and that the efficiency
was entirely dependent on the amount of adsorbent used and the concentration of the
adsorbate. The OTC-adsorbed mass per Cu0.5Mn0.5Fe2O4 mass at the equilibrium (qe) was
highest for the lowest Cu0.5Mn0.5Fe2O4 amount (i.e., 0.006 g) and the decrease at higher
Cu0.5Mn0.5Fe2O4 amounts was due to their more available adsorption sites (Table 2; Figure 5).

At 0.006 g of Cu0.5Mn0.5Fe2O4, the Brouers–Sotolongo model shows a notably greater
qe than the pseudo second-order model, and the accuracies of these models are low (RMSEs
are high and R2s are low), implying that the predicted data may not be as accurate at
an extremely low adsorbent amount (Table 2). At higher amounts of Cu0.5Mn0.5Fe2O4,
the predicted adsorbed concentrations from both models were similar (6.04 and
4.06–4.07 mg g−1 at 0.012 and 0.018 g of Cu0.5Mn0.5Fe2O4, respectively) and the accuracies
of the models are high (RMSEs are low and R2s are high). By comparing the values of R2,
the OTC adsorption mechanism appeared to be best described by the Brouers–Sotolongo
equation. Adsorbate/adsorbent interactions were found to be fractal when the fractal
time exponent (γ; also called the global fractal time) was less than 1 [39,40]. This may be
attributed to the material’s powder-like properties, which may preferentially reside on the
edge wall and the inner lid, decreasing the amount of contact with the OTC molecules.
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Table 2. Parameters for the kinetic model determined from least squares approximation and model
performance measured by RMSE and R2.

Model Cu0.5Mn0.5Fe2O4 (g) Parameters RMSE (mg/g) R2 (%)

Pseudo
first-order

qe (mg g−1) k1 (h−1)

0.006 10.14 2.41 0.48 78.98
0.012 5.94 5.03 0.07 83.92
0.018 4.04 7.91 0.01 79.00

Pseudo
second-order

qe (mg g−1) k2 (g mg−1 h−1)

0.006 10.82 0.38 0.25 94.50
0.012 6.04 3.26 0.01 99.64
0.018 4.06 20.72 <0.01 98.35

Elovich

α (mg g−1 h−1) β (g mg−1)

0.006 1.45 × 103 0.84 0.15 97.83
0.012 6.79 × 1012 5.49 0.05 90.17
0.018 2.78 × 1053 31.63 0.01 92.67

Brouers–Sotolongo (order 2; nr = 2)

qe (mg g−1) τ (h) γ

0.006 14.07 0.33 0.38 0.15 97.92
0.012 6.04 0.05 0.99 0.01 99.64
0.018 4.07 4.50 × 10−3 0.78 <0.01 98.73

Intra-particle
diffusion
(two phases)

Kd (mg g−1 h−1/2) C (mg g−1)

0.006 10.54 if t ≤ 0.58 h 0.00 if t ≤ 0.58 h 0.07 99.52
1.10 if t > 0.58 h 8.03 if t > 0.58 h

0.012 7.75 if t ≤ 0.54 h 0.00 if t ≤ 0.54 h 0.03 96.84
0.13 if t > 0.54 h 5.71 if t > 0.54 h

0.018 5.61 if t ≤ 0.51 h 0.00 if t ≤ 0.51 h <0.01 99.12
0.02 if t > 0.51 h 4.00 if t > 0.51 h
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With an increase in adsorbate amount, agglomeration may have started to occur, ren-
dering the adsorbent attachment to the edge wall unlikely. As can be seen, the experiment
was contaminant-specific and was conducted in the dark. By using OTC as the target con-
taminant, the results show that adsorption is playing the main role as OTC was tentatively
adsorbed before the start of the photocatalytic performance.

Ho and McKay [41] proposed that the adsorbate diffused through the liquid phase and
the film surrounding the adsorbent surface before interacting with the functional groups
of the adsorbent–adsorbate (Table 2). Consequently, the kinetic data previously acquired
were utilized to selectively examine the intra-particle diffusion stages.

Based on our findings, the adsorption phases (i.e., double-linearity characterization)
were divided at 0.51–0.58 h, indicating that the external mass transfer followed by in-
traparticle diffusion may occur at even lower amounts of adsorbent. This allows OTC
molecules to transport to different phases prior to reaching equilibrium. As the adsorbent
dosage increased, the first-phase slopes (Kd) decreased, suggesting that self-agglomeration
had slightly occurred and that the adsorbent boundary layers had thickened. The rapid
disruption in the Kd indicated prompt adsorption on the adsorbent surface, while the sub-
sequent slower rates of adsorption (i.e., a lower Kd) confirmed the occurrence of diffusional
phenomena within the adsorbent particles [42,43].

By comparing the values of RMSE and R2 among three isotherm models
(Tables 1 and 3; Figure 5), the Freundlich model better described the adsorption isotherm
data, indicating that multilayer adsorption was dominant and that the Cu secondary dop-
ing facilitated the uniformly distributed surface for OTC molecules. The n value increased
to >1 at 0.018 g of adsorbent, indicating the system’s unfavorability [44]. This was prob-
ably due to the agglomeration occurring at a higher adsorbent dose, which coincided
with the previously described kinetic experiments. Overall, the results provide proof that,
during the adsorption/desorption equilibrium, adsorption can occur prior to the photo-
catalytic reaction that serves as the main oxidation mechanism for degrading unadsorbed
OTC molecules.

Table 3. Parameters for the isotherm model determined from least squares linear regression, strength
of the linear relationship (between the independent and dependent variables in the linear form of the
model) measured by r2 and r2

adj, and model performance measured by RMSE and R2.

Model Cu0.5Mn0.5Fe2O4
(g) Parameters r2

(%)
r2

adj
(%)

RMSE
(mg/g) R2

Langmuir

qm (mg g−1) b (L mg−1)

0.006 - * - * - * - * - * - *
0.012 994.94 1.08 × 10−3 98.82 98.63 63.08 77.42
0.018 686.72 2.45 × 10−3 99.08 98.92 44.64 88.24

Freundlich

n K f (mg g−1(L mg−1)1/n)

0.006 0.70 0.14 97.68 97.29 28.30 97.09
0.012 0.93 0.74 99.06 98.90 14.65 98.78
0.018 1.09 1.97 99.70 99.65 6.23 99.77

Temkin

BT (J mol−1) AT (L mol−1)

0.006 14.68 14.47 82.87 80.01 68.60 82.87
0.012 19.48 17.17 82.15 79.17 56.09 82.15
0.018 19.98 21.34 86.60 84.37 47.66 86.60

* For Langmuir isotherm model applied to 0.006 g of Cu0.5Mn0.5Fe2O4, the values of parameters are out of
appropriate range.

3.4. OTC Degradation Products

Almost certainly, multiple mechanisms for the oxidative degradation of OTC
(m/z = 460) are occurring simultaneously in this system. The identified intermediates allow
us to suggest the reactions that occur, but only a very limited sequence ordering is possible.
An inspection of 6,10,12 a-trihydroxy-1,3,11,12-tetraoxo-2,5,6,12a-tetrahydronaphthacene
(TC1; m/z = 340) allows us to note that the following steps must have occurred, but in any



Antibiotics 2023, 12, 1151 14 of 20

number of different sequences: decarboxamidation at C2; deamination at C4; dehydroxyla-
tion at C5, demethylation at C6, and tautomerization at C3 and C12 [45] (Figure 6).

Similarly, OTC was converted to 3,4,4a,10-tetrahydro-1 2,8,10-tetrahydroxy-10-methyl-
9-(2H)-anthracenone (TC2; m/z = 277) by ring-cleavage at both the C4aC4 and C12a-C1
bonds [46]. This step occurred either before or after dihydroxylation at C5. The observa-
tion of degradation intermediates TC1 and TC2 supports the idea of multiple oxidative
pathways because TC2 cannot be produced by the degradation of TC1. This is because
the methyl group at C6 in TC2 has already been removed in TC1. Finally, either of these
compounds or many others could lead to the production of 2,3-dioxosuccinic acid by
oxidative cleavage of any ring or sequence of carbon giving a four-carbon chain.
Subsequent oxidation of each carbon of that chain would lead to succinic acid
(m/z = 146) [47].

Further oxidation of that compound would probably lead to oxalic and carbonic
acids, and then shortly thereafter to carbon dioxide and water. Thus, the oxidative fate of
these compounds is likely to be complete mineralization under the reported conditions.
Moreover, our LC/MS results also reveal that the adsorption process was the dominant
process throughout the OTC reaction; however, the degradation products may be unstable
and may have been adsorbed onto the catalyst surface.
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3.5. Effect to Seedling Growth and Root Anatomy

Up to a 50% composition of treated and untreated water, both species had no significant
effect on shoot lengths or root lengths for Vigna radiata L. (Figure 7). This implies that all
of the active radicals had already disappeared and that OTC degradates were not able to
trigger Vigna radiata L. irregular plant growth nor cause any oxidative stress. This result is
consistent with previous works indicating that Vigna radiata L. had an inherent ability for
growth in chemically contaminated soils [48,49]. For Zea mays L. root traits, however, 50%
of both tested waters revealed a significantly negative impact on the germination index,
vigor index, and root length, while, at a lower composition of tested water (i.e., 25%), there
were differences between untreated and treated water, indicating that our treated water
was safer for root growth at this lower composition (Figure 7).
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by the same letter in each species are not significantly different at p ≤ 0.05 according to the Tukey’s
honest significant difference (HSD).

Water plays a crucial role in the germination process since it is necessary for the
activation of enzymes that break down the seed’s stored nutrients and initiate the growth
processes. Therefore, treated water at a high composition, which included OTC-degradates,
a minimal amount of inorganic metal, and an abnormal pH, presumably initially inter-
fered with the physiological and metabolic capacity of seeds to germinate and establish
themselves as healthy seedlings. OTC-contaminated water at high concentrations has been
confirmed to cause disruption in shoot and root growth by inhibiting the photosynthesis
and enzyme activity of lettuce [50]. In addition, Bao et al. [51] showed that, when tested
at higher concentrations of OTC (i.e., 50–150 mg L−1), the untreated OTC had significant
phytotoxic effects on wheat seed germination, root elongation, sprout length, and vitality
index. These investigations show the importance of removing as much antibiotic residues
as possible before utilizing contaminated water for irrigation.

Following the seedling growth experiment, root samples were analyzed for changes
in the anatomical parameters. Our findings reveal significant changes in root anatomy in
response to the composition of treated water, where it showed a shrinking of the endodermis



Antibiotics 2023, 12, 1151 16 of 20

thickness and endodermis area, which could be due to the decrease in the size of the
parenchyma of the cortex and vascular bundles (Figure 8).

For Zea Mays L., changes in endodermis area were observed at 50% of treated water,
while changes in the vascular cylinder diameter, metaxylem area, and cortex were observed
at only 25% of both treated and untreated water (Figure 8). However, the anatomical results
for Vigna radiata L. are slightly different. In brief, only metaxylem and cortex were impacted
by the tested water, but only 50% of the treated water started to negatively impact the
endodermis area and vascular diameter, indicating that Vigna radiata L. could tolerate extreme
conditions better than Zea mays L. (Figure 8). The Vigna radiata L. cortex obviously showed
more negative impacts from the tested water. This is probably due to the nature of the larger
root diameter (i.e., Zea Mays L.), which provided a longer radial distance containing more
cortexes protecting the absorbed aqueous solution from penetrating into the endodermis
area. At higher compositions of treated water, Vigna radiata L. root growth indicated that
both OTC and OTC-degradates could disrupt maturation and cell division in the roots and
may cause anomalous higher auxin production [52]. Because radical remnants were not the
main by-products, we believed that either TC1 or TC2 (refer to Section 3.4; Figure 6) could be
responsible for the reduction in parenchyma cells (Figure 8).
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Vigna radiata L. following exposure to different compositions of treated water. Values followed by
the same letter (s) in each species are not significantly different at p ≤ 0.05 according to the Tukey’s
honest significant difference (HSD).

The reduction in root development is a compelling indication of plant oxidative stress,
which results from a reduction in cell division, a decrease in cell elongation, and a reduction
in the extension of the root meristem [53]. This decrease in cell size could also cause a
reduction in cell wall elasticity, which can eventually lead to overall root contraction [54].
Gomes et al. [52] reported that this cell division impairment was due to the disruption of
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hormones that may have been associated with auxin production after exposure to treated
water, and that any disturbances in auxin signaling can have profound effects on root
anatomy and function.

Comparing the germination indices and the anatomical roots of both tested plants, it is
clear that Zea mays L. was more sensitive than Vigna radiata L. Because of the root parameter
reductions, it is plausible that the shoot would also suffer the same consequence. Because
the plant’s root water potential was greater than its shoot water potential, the plant was
able to absorb more water through its distorted xylem. Because of this, the plant’s capacity
to absorb nutrients would have been compromised, and the OTC degradates would still
be available for uptake by the roots. If the experiment had been set up for a longer time
period (>8 d), we might have seen a different variation in shoot anatomy. In practical
applications, a greater concentration of organic matter and other ion constituents can be
found in water. Existing antibiotics may be present at much lower concentrations, and they
would be naturally absorbed in soils before affecting root development. Most importantly,
the dilution would be significantly lower than the mixture that was tested (<25%).

Past research has shown that a decrease in both cell division and cell size and a
decrease in xylem vessel size are closely associated with the exposure to heavy-metal-
contaminated water that causes the interference of the plant’s uptake of several mineral
elements by heavy metals [55]. Although metal leaching was not an issue of concern in our
study, some micronutrients were found to disrupt the plant mineral nutrient uptake, which
consequently reduced enzyme activity, interfered with physiological processes, damaged
cell membranes, and limited the biosynthesis of metabolites [56].

These changes in root anatomy can ultimately hinder the overall plant growth and
development, can also highlight the sensitivity of root tissues to the composition of treated
water, and can have cascading effects on nutrient uptake, water transport, and overall plant
growth. Therefore, it is crucial to consider the potential impacts of treated water on root
anatomy when assessing the suitability of water sources for irrigation and agricultural
practices. Therefore, unless the amount of catalyst is increased to overcome the high loading
of organic constituents, there should be no concern that these residuals will interfere with
plant growth and yield. Therefore, our H2O2/Cu0.5Mn0.5Fe2O4 oxidative treatment was
shown to be successful in removing antibiotics from water while having minimal to no
negative effects on plant growth.

4. Conclusions

In this study, we developed Cu0.5Mn0.5Fe2O4 nanoparticles using the co-precipitation
method, calcination with melamine, and tested their adsorptive–photocatalytic perfor-
mance on four parabens and the oxytetracycline (OTC) removal efficiency. The material
showed more crystallinity after melamine calcination and showed no Fe2O3 impurity,
enhancing the larger adsorption sites as well as the electrons’ excellent oxygen exchange-
ability, which, in turn, can enhance oxidative reactivity for contaminant removal. All four
parabens were removed within 120 min and OTC within 45 min, respectively. The optimum
condition for pollutant removal was 0.2 g L−1 of Cu0.5Mn0.5Fe2O4 and 40 mM of H2O2.
In the aqueous phase, both adsorptive and photocatalytic reactions can occur. The OTC
diffused through the liquid phase and the film surrounding the adsorbent surface before
interacting with the functional groups of the adsorbent–adsorbate. Then, also in the liquid
phase, OTC rapidly reacted and generated reactive oxygen species. By fitting the kinetics
and isotherm models, the OTC adsorption kinetics fitted well with the Brouers–Sotolongo
model, and the OTC adsorption behavior was well described using the Freundlich isotherm.
The shoot length of Zea mays L. and Vigna radiata L. in 25% treated water had less nega-
tive impact compared to the root length. The overall results show that Cu0.5Mn0.5Fe2O4
nanoparticles have provided a relatively good adsorptive–photocatalytic performance for
the degradation of tested antibiotics and personal care products.
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