26 research outputs found

    Specific shifts in the endocannabinoid system in hibernating brown bears

    Get PDF
    In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear's peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment

    Synthetic and computational assessment of a chiral metal-organic framework catalyst for predictive asymmetric transformation

    No full text
    SSCI-VIDE+ING+JEC:EQDInternational audienceUnderstanding and controlling molecular recognition mechanisms at a chiral solid interface is a continuously addressed challenge in heterogeneous catalysis. Here, the molecular recognition of a chiral peptide-functionalized metal–organic framework (MOF) catalyst towards a pro-chiral substrate is evaluated experimentally and in silico. The MIL-101 metal–organic framework is used as a macroligand for hosting a Noyori-type chiral ruthenium molecular catalyst, namely (benzene)Ru@MIL-101-NH-GlyPro. Its catalytic perfomance toward the asymmetric transfer hydrogenation (ATH) of acetophenone into R- and S-phenylethanol are assessed. The excellent match between the experimentally obtained enantiomeric excesses and the computational outcomes provides a robust atomic-level rationale for the observed product selectivities. The unprecedented role of the MOF in confining the molecular Rucatalyst and in determining the access of the prochiral substrate to the active site is revealed in terms of highly face-specific host–guest interactions. The predicted surface-specific face differentiation of the prochiral substrate is experimentally corroborated since a three-fold increase in enantiomeric excess is obtained with the heterogeneous MOF-based catalyst when compared to its homogeneous molecularcounterpart

    Double lipoxygenation of polyunsaturated fatty acids of nutritional interest

    No full text
    International audienceDouble lipoxygenation of polyunsaturated fatty acids having at least three methylene-interrupted double bonds can be made by two lipoxygenases, e.g. 5 and 12-LOX, or 15-LOX only, followed by reduction of the hydroperoxide products through the glutathione peroxidase action. Several biological activities have been reported for such a double 15-LOX product of docosahexaenoic acid, called protectin DX to differentiate it from protectin D1, a stereo and geometric isomer described for its potent anti-inflammatory potential. The geometric characteristic of the double lipoxygenase products is the conjugated triene E,Z,E (trans,cis,trans), which appears crucial in their biological activities. A focus is also done on single lipoxygenation of mono-hydroxylated products first made by aspirin-treated cyclooxygenase-2. The resulting (R,S)-diOH, E,Z,E conjugated trienes, instead of the (S,S)-diOH isomer in case of double lipoxygenation, seem to be even more active for some biological effects, making biologically relevant the single lipoxygenation in aspirin-treated situations

    Palladium-catalyzed aromatic sulfonylation: A new catalytic domino process exploiting in situ generated sulfinate anions

    No full text
    Allylic sulfones are excellent precursors of aryl sulfones via a new Pd-catalyzed domino sequence involving in situ generation of sulfinate anions and subsequent cross-coupling with aryl -iodides or bromides. © Georg Thieme Verlag Stuttgart · New York

    Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A

    No full text
    International audienceInterleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2-12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-alpha, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells "foamy DCs" and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A

    Unprecedented Synthesis of Alkynylphosphine-boranes through Room-Temperature Oxidative Alkynylation

    No full text
    An original and user-friendly synthesis of alkynylphosphine-boranes, useful building blocks in organic synthesis, based on an oxidative P-alkynylation reaction with readily available copper acetylides is reported. The ability of a secondary phosphine protected with a borane to undergo oxidative coupling without oxidation of the P-moiety is demonstrated for the first time. The reaction, which proceeds at room temperature, is applicable to the preparation of enantioenriched and structurally complex alkynylphosphine-boranes.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Phosphatidylethanolamines Modified by γ-Ketoaldehyde (γKA) Induce Endoplasmic Reticulum Stress and Endothelial Activation*

    No full text
    Peroxidation of plasma lipoproteins has been implicated in the endothelial cell activation and monocyte adhesion that initiate atherosclerosis, but the exact mechanisms underlying this activation remain unclear. Lipid peroxidation generates lipid aldehydes, including the γ-ketoaldehydes (γKA), also termed isoketals or isolevuglandins, that readily modify the amine headgroup of phosphatidylethanolamine (PE). We hypothesized that aldehyde modification of PE could mediate some of the proinflammatory effects of lipid peroxidation. We found that PE modified by γKA (γKA-PE) induced THP-1 monocyte adhesion to human umbilical cord endothelial cells. γKA-PE also induced expression of adhesion molecules and increased MCP-1 and IL-8 mRNA in human umbilical cord endothelial cells. To determine the structural requirements for γKA-PE activity, we tested several related compounds. PE modified by 4-oxo-pentanal induced THP-1 adhesion, but N-glutaroyl-PE and C18:0N-acyl-PE did not, suggesting that an N-pyrrole moiety was essential for cellular activity. As the N-pyrrole headgroup might distort the membrane, we tested the effect of the pyrrole-PEs on membrane parameters. γKA-PE and 4-oxo-pentanal significantly reduced the temperature for the liquid crystalline to hexagonal phase transition in artificial bilayers, suggesting that these pyrrole-PE markedly altered membrane curvature. Additionally, fluorescently labeled γKA-PE rapidly internalized to the endoplasmic reticulum (ER); γKA-PE induced C/EBP homologous protein CHOP and BiP expression and p38 MAPK activity, and inhibitors of ER stress reduced γKA-PE-induced C/EBP homologous protein CHOP and BiP expression as well as EC activation, consistent with γKA-PE inducing ER stress responses that have been previously linked to inflammatory chemokine expression. Thus, γKA-PE is a potential mediator of the inflammation induced by lipid peroxidation
    corecore