2,284 research outputs found

    The theory of heterogeneous dielectric nanostructures with non-typical low-threshold nonlinearity

    Get PDF
    AbstractThe recently discovered, ultralow-threshold, nonlinear refraction of low-intensity laser radiation in dielectric nanostructures has an atypical dependence on radiation intensity in the pulsed and continuous modes. In this study, we present a theoretical explanation. The theory suggests that the nonlinearity is photoinduced in nature, rather than thermal, and depends directly on the nanoparticle electronic structure and the relationship between permittivities of the dielectric matrix and the nanoparticles

    Coherent pion production in proton-deuteron collisions

    Get PDF
    Values of the proton analysing power in the pd3Heπ0/3Hπ+pd\to{}^{3}\textrm{He}\,\pi^0/^{3}\textrm{H}\,\pi^+ reactions at 350-360~MeV per nucleon were obtained by using a polarised proton beam incident on a deuterium cluster-jet target and with a polarised deuteron beam incident on a target cell filled with polarised hydrogen. These results have a much larger angular coverage than existing data. First measurements are also presented of the deuteron vector analysing power and the deuteron-proton spin correlations. Data were also obtained on the deuteron-proton spin correlation and proton analysing power at small angles at 600~MeV per nucleon, though the angular coverage at this energy was much more restricted even when using a deuteron beam. By combining the extrapolated values of the spin correlations to the forward or backward directions with published measurements of the deuteron tensor analysing powers, the relative phases between the two non-vanishing amplitudes were evaluated.Comment: 5 pages, 5 figure

    Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    Full text link
    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Breakdown of the surface barrier against magnetic flux penetration at the cavity equator is considered to be the critical event that determines the onset of Q-drop. The worst case of triangular grooves with low field of first flux penetration Hp, as analyzed previously by Buzdin and Daumens, [1998 Physica C 294: 257], was adapted. This approach incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter kappa, so the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hp when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. When in combination, contamination exacerbates the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of kappa. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~30%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.Comment: 15 pages with 7 figure

    Лечебная физкультура как компонент физической абилитации при болезни Шарко–Мари–Тута

    Get PDF
    Therapeutic physical culture (physical therapy) is an integral part of the programs of habilitation and rehabilitation in many diseases, includingdiseases of central and peripheral nervous system. Charcot-Marie-Tooth disease (CМТ) is a hereditary degenerative disease peripheral nervous system accompanied by the development of progressive muscle weakness and persistent movement disorders. Currently, the use of specialized complexes physical therapy helps to maintain the functional state of the muscles and musculoskeletal status of patients with CMT, and improve strength endurance and increase daily physical activity of the patients. This article describes the modern approaches to organization of physical therapy sessions, recommendations on the training regime, the main types of exercises used in this disease in University Clinic.Лечебная физическая культура (ЛФК) является неотъемлемой частью программ абилитации и реабилитации при многих заболеваниях, в том числе и при заболеваниях центральной и периферической нервной системы. Болезнь Шарко–Мари–Тута (БШМТ) – наследственное дегенеративное заболевание периферической нервной системы, сопровождающееся развитием прогрессирующей мышечной слабости и стойких двигательных нарушений. В настоящее время использование специализированных комплексов ЛФК помогает поддерживать функциональное состояние мышц и опорно-двигательного аппарата пациентов с БШМТ, а также улучшить силовую выносливость и повысить ежедневную физическую активность больных. В данной статье представлены авторские подходы к организации занятий ЛФК, рекомендации по тренировочному режиму, приведены основные виды упражнений, применяющиеся при данном заболевании на базе Университетской клиники

    The neutron-proton charge-exchange amplitudes measured in the dp -> ppn reaction

    Get PDF
    The unpolarised differential cross section and the two deuteron tensor analysing powers A_{xx} and A_{yy} of the pol{d}p -> (pp)n charge-exchange reaction have been measured with the ANKE spectrometer at the COSY storage ring. Using deuteron beams with energies 1.2, 1.6, 1.8, and 2.27 GeV, data were obtained for small momentum transfers to a (pp) system with low excitation energy. The results at the three lower energies are consistent with impulse approximation predictions based upon the current knowledge of the neutron-proton amplitudes. However, at 2.27GeV, where these amplitudes are far more uncertain, agreement requires a reduction in the overall double-spin-flip contribution, with an especially significant effect in the longitudinal direction. These conclusions are supported by measurements of the deuteron-proton spin-correlation parameters C_{x,x} and C_{y,y} that were carried out in the pol{d}pol{p} -> (pp)n reaction at 1.2 and 2.27GeV. The values obtained for the proton analysing power also suggest the need for a radical re-evaluation of the neutron-proton elastic scattering amplitudes at the higher energy. It is therefore clear that such measurements can provide a valuable addition to the neutron-proton database in the charge-exchange region.Comment: 13 pages with 13 figure

    B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma.

    Get PDF
    Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 complex that links BCR signaling to the NF-κB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls an MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival because its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients

    Measurement of the CKM angle γ from a combination of B±→Dh± analyses

    Get PDF
    A combination of three LHCb measurements of the CKM angle γ is presented. The decays B±→D K± and B±→Dπ± are used, where D denotes an admixture of D0 and D0 mesons, decaying into K+K−, π+π−, K±π∓, K±π∓π±π∓, K0Sπ+π−, or K0S K+K− final states. All measurements use a dataset corresponding to 1.0 fb−1 of integrated luminosity. Combining results from B±→D K± decays alone a best-fit value of γ =72.0◦ is found, and confidence intervals are set γ ∈ [56.4,86.7]◦ at 68% CL, γ ∈ [42.6,99.6]◦ at 95% CL. The best-fit value of γ found from a combination of results from B±→Dπ± decays alone, is γ =18.9◦, and the confidence intervals γ ∈ [7.4,99.2]◦ ∪ [167.9,176.4]◦ at 68% CL are set, without constraint at 95% CL. The combination of results from B± → D K± and B± → Dπ± decays gives a best-fit value of γ =72.6◦ and the confidence intervals γ ∈ [55.4,82.3]◦ at 68% CL, γ ∈ [40.2,92.7]◦ at 95% CL are set. All values are expressed modulo 180◦, and are obtained taking into account the effect of D0–D0 mixing

    Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π−

    Get PDF
    A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.), B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.), B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd), B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL

    Measurement of the relative rate of prompt χc0, χc1 and χc2 production at √s=7TeV

    Get PDF
    Prompt production of charmonium χc0, χc1 and χc2 mesons is studied using proton-proton collisions at the LHC at a centre-of-mass energy of √s=7TeV. The χc mesons are identified through their decay to J/ψγ, with J/ψ→μ+mu− using photons that converted in the detector. A data sample, corresponding to an integrated luminosity of 1.0fb−1 collected by the LHCb detector, is used to measure the relative prompt production rate of χc1 and χc2 in the rapidity range 2.0<y<4.5 as a function of the J/ψ transverse momentum from 3 to 20 GeV/c. First evidence for χc0 meson production at a hadron collider is also presented
    corecore