96 research outputs found
Inertial navigation systems for mobile robots
Cataloged from PDF version of article.A low-cost solid-state inertial navigation system
(INS) for mobile robotics applications is described. Error models
for the inertial sensors are generated and included in an Extended
Kalman Filter (EKF) for estimating the position and orientation
of a moving robot vehicle. Two Merent solid-state gyroscopes
have been evaluated for estimating the orientation of the robot.
Performance of the gyroscopes with error models is compared to
the performance when the error models are excluded from the
system. The results demonstrate that without error compensation,
the error in orientation is between 5-15"/min but can be improved
at least by a factor of 5 if an adequate error model is supplied.
Siar error models have been developed for each axis of a solid-state triaxial accelerometer and for a conducting-bubble tilt sensor which may also be used as a low-cost accelerometer. Linear
position estimation with information from accelerometers and tilt sensors is more susceptible to errors due to the double integration
process involved in estimating position. With the system described
here, the position drift rate is 1-8 cds, depending on the frequency
of acceleration changes. An integrated inertial platform
consisting of three gyroscopes, a triaxial accelerometer and two
tilt sensors is described. Results from tests of this platform on a large outdoor mobile robot system are described and compared to
the results obtained from the robot's own radar-based guidance
system. Like all inertial systems, the platform requires additional
information from some absolute position-sensing mechanism to
overcome long-term drift. However, the results show that with
careful and detailed modeling of error sources, low-cost inertial
sensing systems can provide valuable orientation and position
information particularly for outdoor mobile robot applications
Evaluation of solid-state gyroscope for robotics applications
Cataloged from PDF version of article.he evaluation of a low-cost solid-state gyroscope
for robotics applications is described. An error model for the
sensor is generated and included in a Kalman filter for estimating
the orientation of a moving robot vehicle. Orientation eshation
with the error model is compared to the performance when the
error model is excluded from the system. The results demonstrate
that without error compensation, the error in localization is
between 5-15"/min but can be improved at least by a factor
of 5 if an adequate error model is supplied. Like all inertial
systems, the platform requires additional information from some
absolute position-sensing mechanism to overcome long-term drift.
However, the results show that with careful and detailed modeling
of error sources, inertial sensors can provide valuable orientation
information for mobile robot applications
SLAM algorithm applied to robotics assistance for navigation in unknown environments
<p>Abstract</p> <p>Background</p> <p>The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI).</p> <p>Methods</p> <p>In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents.</p> <p>Results</p> <p>The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface.</p> <p>Conclusions</p> <p>The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.</p
Удовлетворенность сотрудников трудом как фактор повышения эффективности деятельности военного факультета БГУИР
Accurate navigation is a fundamental requirement for robotic systems—marine and terrestrial. For an intelligent autonomous system to interact effectively and safely with its environment, it needs to accurately perceive its surroundings. While traditional dead-reckoning filtering can achieve extremely low drift rates, the localization accuracy decays monotonically with distance traveled. Other approaches (such as external beacons) can help; nonetheless, the typical prerogative is to remain at a safe distance and to avoid engaging with the environment. In this chapter we discuss alternative approaches which utilize onboard sensors so that the robot can estimate the location of sensed objects and use these observations to improve its own navigation as well as its perception of the environment. This approach allows for meaningful interaction and autonomy. Three motivating autonomous underwater vehicle (AUV) applications are outlined herein. The first fuses external range sensing with relative sonar measurements. The second application localizes relative to a prior map so as to revisit a specific feature, while the third builds an accurate model of an underwater structure which is consistent and complete. In particular we demonstrate that each approach can be abstracted to a core problem of incremental estimation within a sparse graph of the AUV’s trajectory and the locations of features of interest which can be updated and optimized in real time on board the AUV.QC 20150326</p
RGB-D Odometry and SLAM
The emergence of modern RGB-D sensors had a significant impact in many
application fields, including robotics, augmented reality (AR) and 3D scanning.
They are low-cost, low-power and low-size alternatives to traditional range
sensors such as LiDAR. Moreover, unlike RGB cameras, RGB-D sensors provide the
additional depth information that removes the need of frame-by-frame
triangulation for 3D scene reconstruction. These merits have made them very
popular in mobile robotics and AR, where it is of great interest to estimate
ego-motion and 3D scene structure. Such spatial understanding can enable robots
to navigate autonomously without collisions and allow users to insert virtual
entities consistent with the image stream. In this chapter, we review common
formulations of odometry and Simultaneous Localization and Mapping (known by
its acronym SLAM) using RGB-D stream input. The two topics are closely related,
as the former aims to track the incremental camera motion with respect to a
local map of the scene, and the latter to jointly estimate the camera
trajectory and the global map with consistency. In both cases, the standard
approaches minimize a cost function using nonlinear optimization techniques.
This chapter consists of three main parts: In the first part, we introduce the
basic concept of odometry and SLAM and motivate the use of RGB-D sensors. We
also give mathematical preliminaries relevant to most odometry and SLAM
algorithms. In the second part, we detail the three main components of SLAM
systems: camera pose tracking, scene mapping and loop closing. For each
component, we describe different approaches proposed in the literature. In the
final part, we provide a brief discussion on advanced research topics with the
references to the state-of-the-art.Comment: This is the pre-submission version of the manuscript that was later
edited and published as a chapter in RGB-D Image Analysis and Processin
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
- …