260 research outputs found

    Polymorphism of alpha-1-antitrypsin in hematological malignancies

    Get PDF
    Alpha-1-antitrypsin (AAT) or serine protease inhibitor A1 (SERPINA1) is an important serine protease inhibitor in humans. The main physiological role of AAT is to inhibit neutrophil elastase (NE) released from triggered neutrophils, with an additional lesser role in the defense against damage inflicted by other serine proteases, such as cathepsin G and proteinase 3. Although there is a reported association between AAT polymorphism and different types of cancer, this association with hematological malignancies (HM) is, as yet, unknown. We identified AAT phenotypes by isoelectric focusing (in the pH 4.2-4.9 range) in 151 serum samples from patients with HM (Hodgkins lymphomas, non-Hodgkins lymphomas and malignant monoclonal gammopathies). Healthy blood-donors constituted the control group (n = 272). The evaluated population of patients as well as the control group, were at Hardy-Weinberg equilibrium for the AAT gene (χ2 = 4.42, d.f.11, p = 0.96 and χ2 = 4.71, d.f.11, p = 0.97, respectively). There was no difference in the frequency of deficient AAT alleles (Pi Z and Pi S) between patients and control. However, we found a significantly higher frequency of PiM1M1 homozygote and PiM1 allele in HM patients than in control (for phenotype: f = 0.5166 and 0.4118 respectively, p = 0.037; for allele: f = 0.7020 and 0.6360 respectively, p = 0.05). In addition, PiM homozygotes in HM-patients were more numerous than in controls (59% and 48%, respectively, p = 0.044). PiM1 alleles and PiM1 homozygotes are both associated with hematological malignancies, although this is considered a functionally normal AAT variant

    Acute Activation of AMP-Activated Protein Kinase Prevents H2O2-Induced Premature Senescence in Primary Human Keratinocytes

    Get PDF
    We investigated the effects of AMPK on H2O2-induced premature senescence in primary human keratinocytes. Incubation with 50 µM H2O2 for 2 h resulted in premature senescence with characteristic increases in senescence-associated ß-galactosidase (SA-gal) staining 3 days later and no changes in AMPK or p38 MAPK activity. The increase in SA-gal staining was preceded by increases in both p53 phosphorylation (S15) (1 h) and transactivation (6 h) and the abundance of the cyclin inhibitor p21CIP1 (16 h). Incubation with AICAR or resveratrol, both of which activated AMPK, prevented the H2O2-induced increases in both SA-Gal staining and p21 abundance. In addition, AICAR diminished the increase in p53 transactivation. The decreases in SA-Gal expression induced by resveratrol and AICAR were prevented by the pharmacological AMPK inhibitor Compound C, expression of a DN-AMPK or AMPK knock-down with shRNA. Likewise, both knockdown of AMPK and expression of DN-AMPK were sufficient to induce senescence, even in the absence of exogenous H2O2. As reported by others, we found that AMPK activation by itself increased p53 phosphorylation at S15 in embryonic fibroblasts (MEF), whereas under the same conditions it decreased p53 phosphorylation in the keratinocytes, human aortic endothelial cells, and human HT1080 fibrosarcoma cells. In conclusion, the results indicate that H2O2 at low concentrations causes premature senescence in human keratinocytes by activating p53-p21CIP1 signaling and that these effects can be prevented by acute AMPK activation and enhanced by AMPK downregulation. They also suggest that this action of AMPK may be cell or context-specific

    The three great issues confronting Europe - economic, environmental and political

    Get PDF
    Europe is confronted by an intimidating triple challenge – economic stagnation, climate change, and a governance crisis. This paper demonstrates how the three challenges are closely inter-related, and discusses how they can be dealt with more effectively in order to arrive at a more economically secure, environmentally sustainable and well governed Europe. In particular, a return to classic economic growth cannot come at the expense of greater risk of irreversible climate change. Instead, what is required is a fundamental transformation of the economy to a new ‘green’ trajectory based on rapidly diminishing emission of greenhouse gases. Following this path would mean turning Europe into a veritable laboratory for sustainable growth, environmentally as well as socially

    Killer whale genomes reveal a complex history of recurrent admixture and vicariance

    Get PDF
    Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree‐like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non‐Antarctic lineages is further driven by ancestry segments with up to fourfold older coalescence time than the genome‐wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome‐wide data to sample the variation in ancestry within individuals
    corecore