368 research outputs found

    The LBDS Hercules sample of mJy radio sources at 1.4 GHz - II. Redshift distribution, radio luminosity function, and the high-redshift cut-off

    Get PDF
    {Abridged} A combination of spectroscopy and broadband photometric redshifts has been used to find the complete redshift distribution of the Hercules sample of millijansky radio sources. These data have been used to examine the evolution of the radio luminosity function (RLF) and its high-redshift cut-off. New redshifts have been measured for eleven sources, and a further ten upper limits are given. The total number of sources with known redshifts in the sample is now 47 (65%). We calculated broadband photometric redshifts for the remaining one-third of the sample. For the luminosity range probed by the present study (P_1.4 > 10^24.5 W/Hz/sr), we use the V/V_max test to show conclusively that there is a deficit of high-redshift (z > 2-2.5) objects. Comparison with the model RLFs of Dunlop & Peacock (1990) shows that our data can now exclude pure luminosity evolution. Two of the models of DP90, and the RLF deduced by direct binning of the data, both favour a luminosity dependence for the high-redshift cut-off, with lower-luminosity sources (P_1.4 \simeq 10^24 W/Hz/sr) in decline by z \simeq 1-1.5 while higher-luminosity sources (P_1.4 \simeq 10^{25-26} W/Hz/sr) decline in comoving number density beyond z \simeq 2-2.5.Comment: Revised version submitted to MNRAS. 16 pages, 12 figure

    A 1200-micron MAMBO survey of ELAISN2 and the Lockman Hole - I. Maps, sources and number counts

    Get PDF
    The definitive version is available at www.blackwell-synergy.com '.--Copyright Blackwell Publishing. DOI : 10.1111/j.1365-2966.2004.08235.xWe present a deep, new 1200ÎŒm survey of the ELAISN2 and Lockman Hole fields using the Max Planck Millimeter Bolometer array (MAMBO). The areas surveyed are 160 arcmin2 in ELAISN2 and 197 arcmin2 in the Lockman Hole, covering the entire SCUBA ‘8mJy Survey’. In total, 27 (44) sources have been detected at a significance 4.0 ( 3.5 ). The primary goals of the survey were to investigate the reliability of (sub)millimetre galaxy (SMG) samples, to analyse SMGs using flux ratios sensitive to redshift at z > 3, and to search for ‘SCUBA drop-outs’, i.e. galaxies at z >> 3. We present the 1200ÎŒm number counts and find evidence of a fall at bright flux levels. Employing parametric models for the evolution of the local 60ÎŒm IRAS luminosity function (LF), we are able to account simultaneously for the 1200 and 850ÎŒm counts, suggesting that the MAMBO and SCUBA sources trace the same underlying population of high-redshift, dust-enshrouded galaxies. From a nearest-neighbour clustering analysis we find tentative evidence that themost significantMAMBO sources come in pairs, typically separated by 23â€Čâ€Č. Our MAMBO observations unambiguously confirm around half of the SCUBA sources. In a robust sub-sample of 13 SMGs detected by both MAMBO and SCUBA at a significance 3.5 , only one has no radio counterpart. Furthermore, the distribution of 850/1200ÎŒmflux density ratios for this sub-sample is consistent with the spectroscopic redshift distribution of radio-detected SMGs (Chapman et al. 2003). Finally, we have searched for evidence of a high-redshift tail of SMGs amongst the 18 MAMBO sources which are not detected by SCUBA. While we cannot rule out that some of them are SCUBA drop-outs at z >> 3, their overall 850-to-1200ÎŒm flux distribution is statistically indistinguishable from that of the 13 SMGS which were robustly identified by both MAMBO and SCUBA.Peer reviewe

    The KMOS Deep Survey (KDS) – I. Dynamical measurements of typical star-forming galaxies at z ≃ 3.5

    Get PDF
    We present dynamical measurements from the KMOS (K-band Multi-Object Spectrograph) Deep Survey (KDS), which is comprised of 77 typical star-forming galaxies at z z ≃ 3.5 in the mass range 9.0 1), with the sample average VC/σint value much smaller than at lower redshift. After carefully selecting comparable star-forming samples at multiple epochs, we find that the rotation-dominated fraction evolves with redshift with a z−0.2 dependence. The rotation-dominated KDS galaxies show no clear offset from the local rotation velocity-stellar mass (i.e. VC − M⋆) relation, although a smaller fraction of the galaxies are on the relation due to the increase in the dispersion-dominated fraction. These observations are consistent with a simple equilibrium model picture, in which random motions are boosted in high-redshift galaxies by a combination of the increasing gas fractions, accretion efficiency, specific star-formation rate and stellar feedback and which may provide significant pressure support against gravity on the galactic disk scale

    The black-hole masses of Seyfert galaxies and quasars

    Get PDF
    The central black-hole masses of a sample of 30 luminous quasars are estimated using H-beta FWHM measurements from a combination of new and previously-published nuclear spectra. The quasar black-hole mass estimates are combined with reverberation-mapping measurements for a sample of Seyfert galaxies (Wandel 1999) in order to study AGN black-hole masses over a wide range in nuclear luminosity. It is found that black-hole mass and bulge luminosity are well correlated and follow a relation consistent with that expected if black-hole and bulge mass are directly proportional. Contrary to the results of Wandel (1999) no evidence is found that Seyfert galaxies follow a different Mblack-Mbulge relation to quasars. However, the black-hole mass distributions of the radio-loud and radio-quiet quasar sub-samples are found to be significantly different, with the median black-hole mass of the radio-loud quasars a factor of three larger than their radio-quiet counterparts. Finally, utilizing the elliptical galaxy fundamental plane to provide stellar velocity dispersion estimates, a comparison is performed between the virial H-beta black-hole mass estimates and those of the Mblack-sigma correlations of Gebhardt et al. (2000a) and Merritt & Ferrarese (2000). With the disc-like geometry of the broad-line region adopted in this paper, the virial H-beta black-hole masses indicate that the correct normalization of the black-hole vs. bulge mass relation is Mblack=0.0025Mbulge, while the standard assumption of purely random broad-line velocities leads to Mblack=0.0008Mbulge. The normalization of Mblack=0.0025Mbulge provided by the disc model is in remarkably good agreement with that inferred for our quasar sample using the (completely independent) Mblack-sigma correlations.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    Steeper, Flatter, or Just "Salpeter"? Evidence from Galaxy Evolution and Galaxy Clusters

    Full text link
    A single-slope "Salpeter" IMF overpredicts the stellar M/L ratio of local elliptical galaxies by about a factor of 2, which requires the IMF to be flatter below about one solar mass. On the other hand a Salpeter IMF for stars more massive than the sun predicts an evolution with redshift of the fundamental plane of ellipticals in clusters which is in agreement with the observations and a formation at z>~3 for these galaxies. A "Salpeter" IMF for 1<M<40 solar masses also predicts the observed amount of heavy elements (oxygen and silicon) in clusters of galaxies.Comment: 10 pages, 7 figures, to appear on "IMF@50: The Initial Mass Function 50 Years Later", ed. E. Corbelli, F. Palla, & H. Zinnecker (Dordrecht: Kluwer), in press. Invited talk at the International Workshop held in Abbazia di Spineto, Tuscany, Italy -- May 16-20, 200

    Age Constraints on Brane Models of Dark Energy

    Get PDF
    Inspired by recent developments in particle physics, the so-called brane world cosmology seems to provide an alternative explanation for the present dark energy problem. In this paper, we use the estimated age of high-zz objects to constrain the value of the cosmological parameters in some particular scenarios based on this large scale modification of gravity. We show that such models are compatible with these observations for values of the crossover distance between the 4 and 5 dimensions of the order of rc≀1.67Ho−1r_c \leq 1.67H_o^{-1}.Comment: 4 pages, 2 figures, 1 table, to appear in Phys. Rev.

    IceCube expectations for two high-energy neutrino production models at active galactic nuclei

    Full text link
    We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers & Tinyakov (KT) and another by Becker & Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 10^5 < E/GeV < 10^8. We have used the latest estimated discovery potential of the IceCube-86 array at the 5-sigma level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, alpha, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Gamma_nu/Gamma_{CR}, and the maximum redshift of the sources that contribute to the cosmic-ray flux, zCRmax. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of alpha = 2.7 obtained from fits to cosmic-ray data. Lower values of alpha, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5-sigma level or more is guaranteed.Comment: 24 pages, 6 figures, v2: new IceCube-40 astrophysical neutrino upper bound and IceCube-86 discovery potential used, explanation of AGN flux models improved, only upgoing neutrinos used, conclusions strengthened. Accepted for publication in JCA

    High-redshift objects and the generalized Chaplygin gas

    Get PDF
    Motivated by recent developments in particle physics and cosmology, there has been growing interest in an unified description of dark matter and dark energy scenarios. In this paper we explore observational constraints from age estimates of high-zz objects on cosmological models dominated by an exotic fluid with equation of state p=−A/ραp = -A/\rho^{\alpha} (the so-called generalized Chaplygin gas) which has the interesting feature of interpolating between non-relativistic matter and negative-pressure dark energy regimes. As a general result we find that, if the age estimates of these objects are correct, they impose very restrictive limits on some of these scenarios.Comment: 5 pages, 3 figures, to appear in Phys. Rev.

    Current lookback time-redshift bounds on dark energy

    Get PDF
    We investigate observational constraints on dark energy models from lookback time (LT) estimates of 32 old passive galaxies distributed over the redshift interval 0.11≀z≀1.840.11 \leq z \leq 1.84. To build up our LT sample we combine the age measurements for these 32 objects with estimates of the total age of the Universe, as obtained from current CMB data. We show that LT data may provide bounds on the cosmological parameters with accuracy competitive with type Ia Supernova methods. In order to break possible degeneracies between models parameters, we also discuss the bounds when our lookback time versus redshift sample is combined with with the recent measurement of the baryonic acoustic oscillation peak and the derived age of the Universe from current CMB measurements.Comment: 6 pages, 4 figures, LaTe
    • 

    corecore