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We investigate observational constraints on dark energy models from lookback time (LT) estimates of 32
old passive galaxies distributed over the redshift interval 0.11 � z � 1.84. To build up our LT sample
we combine the age measurements for these 32 objects with estimates of the total age of the Universe,
as obtained from current CMB data. We show that LT data may provide bounds on the cosmological
parameters with accuracy competitive with type Ia Supernova methods. In order to break possible
degeneracies between models parameters, we also discuss the bounds when our lookback time versus
redshift sample is combined with the recent measurement of the baryonic acoustic oscillation peak and
the derived age of the Universe from current CMB measurements.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The ratio of the dark energy pressure to its energy density, the
so-called equation of state (EoS) parameter, ω, is nowadays one of
the most searched numbers in general relativistic cosmology (see,
e.g., Ref. [1] for recent reviews). This is so for at least two different
reasons. First, because if one could set ω to be exactly −1, then
there would be a great probability of identifying the dark energy
with the vacuum state of all existing fields in the Universe, i.e., the
cosmological constant (Λ). Similarly, if a value ω �= −1 (or a time
variation of ω over the cosmic evolution) is unambiguously found,
then one could not only rule out the cosmological constant but
also seriously think of the dark pressure responsible for the current
cosmic acceleration as the potential energy density associated with
a dynamical scalar field φ. The possibility ω �= −1 still leads to two
different routes, i.e., a quintessence field if −1 < ω < 1/3 [2] or a
phantom component for ω < −1 [3]. Both cases violate the strong
energy condition, ρ + 3p > 0, but the latter goes further and also
violates the null energy condition, i.e., ρ + p > 0 [4].

Clearly, constraining the value ω from different sets of obser-
vational data constitutes an important way to improve our under-
standing of the actual nature of the dark energy. In this regard,
finding new methods or reviving old ones that could directly or
indirectly quantify the amount of dark energy present in the Uni-
verse, as well as determine its EoS parameter, are important tasks
for both theoretical and observational cosmologists. Bounds on ω
have been obtained from observations based on completely dis-
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tinct physics [5–13] (see also [1] and Refs. therein). This diversity
of technics, as well as combinations among them, is particularly
important to a more reliable determination of ω, since different
methods may constrain different regions of the parameter space
and, therefore, may be complementary to each other.

In this Letter, by following the methodology presented in Refs.
[14,15], we are particularly interested in deriving the current look-
back time (LT) versus redshift bounds on the dark energy EoS and
its density parameter from a sample of 32 passively evolving galax-
ies, as recently studied by Simon et al. [16]. The absolute age for
these 32 objects was determined by fitting stellar population mod-
els and the sample includes observations from the Gemini Deep
Deep Survey (GDDS) [17] and archival data [7]. The same data,
along with other age estimates of high-z objects, were recently
used to reconstruct the shape and redshift evolution of the dark
energy potential [16], to place bounds on holography-inspired dark
energy scenarios [18], as well as to constrain models of modified
gravity [19]. Here, we focus our analysis on two dark energy mod-
els, namely, the standard �CDM scenario and a flat universe driven
by non-relativistic matter (baryonic+dark) and a smooth negative-
pressure dark energy component (ωCDM). In order to better con-
strain the parametric spaces for these scenarios, we also combine
LT data with the recent measurement of the baryonic acoustic
oscillation peak [11] and the derived age of the Universe from cur-
rent CMB measurements [6].

2. Lookback time-redshift test

2.1. Theory

The lookback time-redshift relation, defined as the difference
between the present age of the Universe (t0) and its age (tz) when
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Fig. 1. The age-redshift data points. (a) Original data from Ref. [16]. This sample
corresponds to 32 old passive galaxies distributed over the redshift interval 0.11 �
z � 1.84 and includes observations from the Gemini Deep Deep Survey (GDDS) [17]
and archival data [7]. (b) The LT sample. To obtain this sample we have combined
the age measurements for these 32 objects with estimates of the total age of the
Universe, tobs

0 = 13.7 ± 0.2 Gyr, as obtained from current CMB data [6].

a particular light ray at redshift z was emitted, can be written as

tL(z;p) = H−1
0

z∫
0

dz′

(1 + z′)H(p)
, (1)

where H−1
0 = 9.78h−1 Gyr and h ranges in the HST key project 1σ

interval 0.72 ± 0.08 [20]. In the above expression,

H(p) = √
E(p) with E(p) = Ωma−3 + Ωxa−3(1+ω), (2)

where H(p) ≡ H(p)/H0, the complete set of parameters is p ≡
Ω j,ω ( j ≡ m, Λ and x stand for matter, cosmological constant
(ω = −1) and dark energy (ω < 0) density parameters, respec-
tively), and the subscript 0 denotes present-day quantities.
To proceed further, let us now consider an object at redshift zi
whose the age t(zi) is defined as the difference between the age of
the Universe at zi and the one when the object was born zF , i.e.,

t(zi) = 1

H0

[ ∞∫
zi

dz′

(1 + z′)H(p)
−

∞∫
zF

dz′

(1 + z′)H(p)

]
(3)

or, equivalently,

t(zi) = tL(zF ) − tL(zi). (4)

From the above expressions, we can define the observed lookback
time to an object at zi as [14]

tobs
L (zi;τ ) = tL(zF ) − t(zi)

= [
tobs

0 − t(zi)
] − [

tobs
0 − tL(zF )

]
= tobs

0 − t(zi) − τi, (5)

where τi stands for the so-called delay factor, which accounts for
our ignorance about the amount of time since the beginning of the
structure formation in the Universe until the formation time (ti

f )
of the object i [7].

We estimate the best-fit to the set of parameters p by defining
the likelihood function

Lage ∝ exp
[−χ2

age

(
z;p, τ ∗

i

)
/2

]
, (6)

where χ2
age is given by

χ2
age =

n∑
i=1

[H0tL(zi;p) − H0tobs
L (zi;τ ∗

i )]2

σ̃ 2
i

+ [H0t0(p) − H0tobs
0 ]2

σ 2
H0tobs

0

. (7)

Here, σ̃ 2
i ≡ σ 2

H0ti
L

+ σ 2
H0tobs

0
, σH0ti

L
is the uncertainty in the indi-

vidual lookback time to the ith galaxy of our sample and σH0tobs
0

stands for the uncertainty on the total age parameter H0tobs
0 . The

prior on the total age of the Universe is justified by the fact that
quintessence scenarios that are able to explain age estimates of
high-z objects may not be compatible with the total expanding
age up to z = 0 (and vice-versa) (see, e.g, [21] for a discussion).

Another important aspect concerns the dimensionless delay fac-
tor parameter τ ∗ = H0τ . Note that in principle there must be vari-
ations in the value of τ ∗ for each object in the sample (galaxies
form at different epochs). Differently from Ref. [15], in the present
analysis the delay factor parameter τ ∗

i for each object of the sam-
ple is assumed as a nuisance parameter, so that we marginalize
over them. Note also that, although involving a n number of inte-
grations, this marginalization may also be analytically obtained by
defining a modified log-likelihood function χ̃2, i.e.,

χ̃2 = −2 ln

( ∞∫
0

· · ·
∞∫

0

dτ ∗
i exp

[
−1

2
χ2

age

(
z;p, τ ∗

i

)])

= n ln

(
2

π

)
+

n∑
i=1

ln

(
1

σ̃ 2
i

)
− 2

n∑
i=1

ln
[
erfc(Ai)

] + E, (8)

where

Ai =
(

�i√
2σ̃i

)
, �i = H0tL(zi;p) − H0

[
tobs

0 − t(zi)
]
,

and E is the second term of the rhs of Eq. (7).
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Fig. 2. (a): Confidence contours at 68.3% and 95.4% in the parametric space Ωm − h from LT analysis. As physically expected, the larger the value of Ωm the smaller the value
of the Hubble parameter that is allowed in order to fit the LT data. (b): Likelihood function for Ωm. From this calculation, we have found Ωm = 0.259 ± 0.030 at 95.4% (C.L.).
(c): The Ωm − ΩΛ plane arising from our LT analysis. The best-fit favours a spatially open universe with Ωk 	 0.7.
2.2. Data

In order to apply the method outlined above, we use age es-
timates of 32 old passive galaxies distributed over the redshift
interval 0.11 � z � 1.84, as recently analized in Ref. [16]. The total
sample is composed by three sub-samples: field early-type galaxies
from Ref. [22], whose ages were obtained by using SPEED mod-
els of Ref. [23]; 20 red galaxies from the publicly released Gemini
Deep Survey (GDDS) [17] — Ref. [16] re-analized the GDDS old
sample by using a different stellar population models and obtained
ages within 0.1 Gyr of the GDDS collaboration estimates — and the
two radio galaxies LBDS 53W091 and LBDS 53W069 [7].

To build up our LT sample, we combine the ages of the above
galaxy sample with estimates of the total age of the Universe tobs

0 ,
according to Eq. (5). In our analysis, we assume tobs

0 = 13.7 ±
0.2 Gyr, as obtained from a joint analysis involving current data
of the most recent CMB experiments (WMAP, DASI, VSA, ACBAR,
MAXIMA, CBI and BOOMERANG) [6]. In Figs. 1(a) and 1(b) we
show, respectively, the original age estimates and transformed
lookback time as a function of the redshift for the 32 galaxies of
Ref. [16].

3. Results

In this section we discuss quantitatively how our LT sample
may place bounds on the EoS and the density parameters describ-
ing the dark matter and dark energy through a statistical analysis
of the data. We perform our analyses in the context of two differ-
ent dark energy models, namely, the standard �CDM scenario (flat
and general curvature) and a spatially flat universe driven by non-
relativistic matter (baryonic + dark) and a negative-pressure dark
energy component (ωCDM), as described in Eq. (2).

3.1. ΛCDM

In Figs. 2(a)–2(c) we show the first results of our statistical
analyses. By fixing ω = −1 in Eq. (2), Fig. 2(a) shows contour plots
(68.3% and 95.4% C.L.) in the Ωm − h plane for the χ2

age given
by Eqs. (6)–(8) plus a Gaussian prior on the Hubble parameter,
h = 0.72 ± 0.08, as given by the final results of the HST key project
[20]. As physically expected, the larger the value of Ωm the smaller
the value of the Hubble parameter that is allowed by the statisti-
cal analysis in order to fit the tL(z) estimates. At 95.4% (C.L.), we
have found 0.18 � Ωm � 0.23 or, equivalently, 0.74 � ΩΛ � 0.77
(ΩΛ = 1 − Ωm).

Fig. 2(b) shows the likelihood function for the matter density
parameter. The dotted lines are cuts in the regions of 68.3% and
95.4% (C.L.). From this calculation, we have found Ωm = 0.259 ±
0.030 at 95.4% (C.L.), which is in good agreement with current Ωm
estimates from CMB [6] and other independent [24] results. We
also show in Fig. 2(c) the Ωm − ΩΛ space when the flat condition
is relaxed, i.e., by adding the term Ωka−2 = (1 − Ωm − ΩΛ)a−2 to
the E(p) function of Eq. (2). Differently to the results from current
SNe Ia data (which prefer a spatially closed universe), the best-fit
scenario is an open universe with Ωk 	 0.7 and 0.03 � Ωm � 0.1
and 0.15 � ΩΛ � 0.32 at 95% (C.L.).

3.1.1. Joint analysis
As well known, the acoustic peaks in the cosmic microwave

background (CMB) anisotropy power spectrum is an efficient way
for determining cosmological parameters. Because the acoustic os-
cillations in the relativistic plasma of the early universe will also
be imprinted on to the late-time power spectrum of the non-
relativistic matter [25], the acoustic signatures in the large-scale
clustering of galaxies yield additional tests for cosmology. In par-
ticular, the characteristic and reasonably sharp length scale mea-
sured at a wide range of redshifts provide an estimate of the
distance-redshift relation, which is a geometric complement to the
usual luminosity-distance from SNe Ia. Using a large spectroscopic
sample of 46,748 luminous, red galaxies covering 3816 square de-
grees out to a redshift of z = 0.47 from the Sloan Digital Sky
Survey, Eisenstein et al. [11] have successfully found the peaks,
described by the A-parameter, i.e.,1

A ≡ Ω
1/2
m

zBAO

[
zBAO

Γ 2(zBAO;p)

E(zBAO;p)

]1/3

= 0.469

(
ns

0.98

)−0.35

± 0.017, (9)

which can be used to constrain cosmological scenarios that do not
have a large contribution of dark energy at early times [12]. In the

1 A direct generalization of Eq. (9) for arbitrary curvatures can be written as

A ≡ Ω
1/2
m

H(zBAO)1/3 [ 1
zBAO

√|Ωk | F (
√|Ωk|Γ (zBAO))]2/3, where the function F (x) is defined

as sinh(x), x, and sin(x), respectively, for open, flat and closed geometries.
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Fig. 3. Results from joint analyses involving LT and BAO data. (a): The plane Ωm − h
for a flat �CDM model. From this analysis we found Ωm = 0.25 ± 0.02 and h =
0.73+0.02

−0.03 at 2σ level. (b): 68.3% and 95.4% confidence contours in the Ωm − ΩΛ .
The best-fit model clearly favours a spatially flat model with Ωk 	 0.07 and Ωm =
0.24 ± 0.02 and ΩΛ = 0.69 ± 0.08 at 95.4% (C.L.).

above expression, zBAO = 0.35 is the redshift at which the acous-
tic scale has been measured, Γ (zBAO;p) ≡ ∫ zBAO

0 dz/H(zBAO) is the
dimensionless comoving distance to zBAO, and we have taken the
scalar spectral index ns = 0.95, as given in Ref. [6].

In Fig. 3(a) we show contour plots (68.3% and 95.4% C.L.) in
the Ωm–h plane for the LT + BAO combination. Note that, relative
to the results shown in Fig. 2(a), the allowed parameter space is
now considerably reduced, with the 2σ bounds lying in the inter-
val Ωm = 0.25 ± 0.02 and h = 0.73+0.02

−0.03. By allowing for arbitrary
curvature and using a proper generalization of Eq. (9), Fig. 3(b)
shows the Ωm − ΩΛ space for the joint LT + BAO analysis. The al-
lowed parameter space now is considerably reduced relative to the
former case of Fig. 2(c). In agreement with current CMB results
[6], the best-fit model for this joint LT + BAO analysis clearly fa-
vors a nearly flat universe with Ωk 	 0.07 and Ωm = 0.24 ± 0.02
and ΩΛ = 0.69 ± 0.08 at 95.4% (C.L.).

3.2. ωCDM

With the usual assumption that the effective EoS, w 	∫
ω(z)Ωx(z)dz/Ωx(z), is a good approximation for the wide class
(a)

(b)

Fig. 4. Results for ωCDM model. (a): The Ωm–w space allowed by LT data. (b):
LT + BAO bounds on the Ωm–ω plane. As discussed in Ref. [15], the tighter results
found in this combined analysis reflect the complementarity between LT and BAO
measurements.

of dark energy scenarios, from now on we discuss the bounds from
LT and LT + BAO data on ω.

Fig. 4(a) shows the parametric space Ωm–ω allowed at 68.3%
and 95.4% (C.L.) from LT data only. Note that, although the matter
density parameter is well constrained by these data, a large inter-
val for ω is still allowed. In particular, the best-fit model happens
for values of Ωm 	 0.1 and ω 	 −0.46. Note also that, although
the physics behind LT and SNe Ia observations are quite differ-
ent, LT constraints on the Ωm–ω plane are very similar to those
obtained from SNe Ia measurements. This amounts to saying that
combinations of LT + SNe Ia data are not able to break possible de-
generacies on the plane Ωm–ω, and also that LT data may provide
bounds on the cosmological parameters with accuracy competitive
with SNe Ia methods (see Ref. [15] for a discussion).

A different result arises when the current BAO measurement at
z = 0.35 is added to the analysis (Fig. 4(b)). In this case, both ω
and Ωm intervals are more tightly constrained, with the best-fit
values given by Ωm 	 0.27 and ω 	 −1.04. At 95.4% (C.L.) we also
found 0.25 � Ωm � 0.29 and −1.21 � ω � −0.88. As discussed in
Ref. [15], the tighter results found in the combined analyses [Figs.
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3(b) and 4(b)] reflect the complementarity between LT and BAO
measurements, which in turn makes possible to break the degen-
eracies inherent to the parametric plane Ωm–ω.

4. Final remarks

The recent accumulation of independent observational results
has opened up a robust window for probing the behavior of the
dark component responsible for the current cosmic acceleration.
However, most of the methods employed to place limits on the
dark energy EoS (ω) or, more generically, on the parametric space
Ωm–ω, are essentially based on distance measurements to a par-
ticular class of objects or physical rulers (e.g., SNe Ia, CMB, galaxy
clusters, etc.). In this regard, it is also particularly important to ob-
tain accurate and independent bounds on the physical behavior of
the dark energy, as well as on the other main cosmological param-
eters, from physics relying on different kinds of observations.

In this Letter, by extending and updating the results of Ref. [15],
we have followed this direction and studied the current constraints
on the parametric space Ωm–ω from age measurements of high-z
galaxies, as recently discussed in Ref. [16]. By using a sample of
32 passively evolving galaxies distributed over the redshift interval
0.11 � z � 1.84, we have transformed age measurements into LT
estimates (by using the current values for the total age of the Uni-
verse from CMB data) and discussed quantitatively how these cur-
rent age data may constrain the parametric spaces Ωm − ΩΛ and
Ωm–ω. We have shown that LT data may provide bounds on the
cosmological parameters with an accuracy competitive with SNe
Ia methods [see, e.g., Figs. 3(a) and 3(b)]. Due to the complemen-
tarity between LT (age) and BAO (distance) measurements, our best
results are obtained when joint analyses involving these two differ-
ent observables are performed. By assuming ω = −1 (�CDM) and
allowing for arbitrary curvature, we have found Ωm = 0.24 ± 0.02
and ΩΛ = 0.69±0.08 at 95.4% (C.L.), which clearly favours a nearly
flat universe with Ωk 	 0.07. For a spatially flat model dominated
by a negative-pressure component with a constant EoS ω, we have
found 0.25 � Ωm � 0.29 and −1.21 � ω � −0.88 (95.4% C.L.),
which is again close to the so-called concordance scenario obtained
from the usual distance-based combination of SNe + BAO + CMB
data.

Acknowledgements

The authors are very grateful to Deepak Jain, Abha Dev, Simone
Daflon and Claudio Bastos for valuable discussions. M.A.D., J.S.A.
and N.P. thank CNPq (Brazil) for the grants under which this work
was carried out.

References

[1] V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9 (2000) 373;
P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75 (2003) 559;
T. Padmanabhan, Phys. Rep. 380 (2003) 235;
E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753;
J.S. Alcaniz, Braz. J. Phys. 36 (2006) 1109.

[2] P.J.E. Peebles, B. Ratra, Astrophys. J. Lett. 325 (1988) L17;
R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80 (1998) 1582;
T. Padmanabhan, Phys. Rev. D 66 (2002) 021301;
F.C. Carvalho, J.S. Alcaniz, J.A.S. Lima, R. Silva, Phys. Rev. Lett. 97 (2006) 081301.

[3] R.R. Caldwell, Phys. Lett. B 545 (2002) 23;
R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91 (2003)
071301;
J.S. Alcaniz, Phys. Rev. D 69 (2004) 083521;
S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 70 (2004) 123529;
J. Santos, J.S. Alcaniz, Phys. Lett. B 619 (2005) 11.

[4] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Spacetime, Cambridge
University Press, England, 1973;
M. Visser, Lorentzian Wormholes, AIP Press, New York, 1996.

[5] A. Riess, et al., Astron. J. 116 (1998) 1009;
S. Perlmutter, et al., Astrophys. J. 517 (1999) 565;
P. Astier, et al., Astron. Astrophys. 447 (2006) 31;
A.G. Riess, et al., Astrophys. J. 659 (2007) 98.

[6] D.N. Spergel, et al., Astrophys. J. Suppl. 170 (2007) 377;
J. Dunkley, et al., arXiv:0803.0586 [astro-ph].

[7] J.S. Dunlop, et al., Nature 381 (1996) 581;
J.S. Dunlop, in: H.J.A. Rttgering, P.N. Best, M.D. Lehnert (Eds.), The Most Distant
Radio Galaxies, 1999, p. 71;
L.A. Nolan, et al., Mon. Not. R. Astron. Soc. 323 (2001) 385.

[8] L.M. Krauss, Astrophys. J. 480 (1997) 486;
J.S. Alcaniz, J.A.S. Lima, Astrophys. J. 521 (1999) L87;
J.A.S. Lima, J.S. Alcaniz, Mon. Not. R. Astron. Soc. 317 (2000) 893;
J.S. Alcaniz, J.A.S. Lima, Astrophys. J. 550 (2001) L133;
J.S. Alcaniz, J.A.S. Lima, J.V. Cunha, Mon. Not. R. Astron. Soc. 340 (2003) L39;
D. Jain, A. Dev, Phys. Lett. B 633 (2006) 436.

[9] A. Buchalter, et al., Astrophys. J. 494 (1998) 503;
L.I. Gurvits, K.I. Kellermann, S. Frey, Astron. Astrophys. 342 (1999) 378;
J.A.S. Lima, J.S. Alcaniz, Astron. Astrophys. 357 (2000) 393;
J.S. Alcaniz, Phys. Rev. D 65 (2002) 123514;
J.A.S. Lima, J.S. Alcaniz, Astrophys. J. 566 (2002) 15;
Z.H. Zhu, M.K. Fujimoto, Astrophys. J. 581 (2002) 1;
G. Chen, B. Ratra, Astrophys. J. 582 (2003) 586;
D. Jain, A. Dev, J.S. Alcaniz, Class. Quantum Grav. 20 (2003) 4485;
S. Podariu, R.A. Daly, M.P. Mory, B. Ratra, Astrophys. J. 584 (2003) 577;
L.I. Gurvits, New Astron. Rev. 48 (2004) 1211;
Z.H. Zhu, M.K. Fujimoto, X.T. He, Astron. Astrophys. 417 (2004) 833.

[10] S.W. Allen, S. Ettori, A.C. Fabian, Mon. Not. R. Astron. Soc. 324 (2002) 877;
S.W. Allen, R.W. Schmidt, A.C. Fabian, Mon. Not. R. Astron. Soc. 334 (2002) L11;
J.A.S. Lima, J.V. Cunha, J.S. Alcaniz, Phys. Rev. D 68 (2003) 023510;
S.W. Allen, et al., Mon. Not. R. Astron. Soc. 353 (2004) 457;
G. Chen, B. Ratra, Astrophys. J. 612 (2004) L1;
J.V. Cunha, J.S. Alcaniz, J.A.S. Lima, Phys. Rev. D 69 (2004) 083501;
S.W. Allen, et al., Mon. Not. R. Astron. Soc. 383 (2008) 879;
Z.H. Zhu, M. Hu, J.S. Alcaniz, Y.X. Liu, Astro. Astrophys. 483 (2008) 15;
L. Samushia, B. Ratra, Astrophys. J. 680 (2008) L1.

[11] D.J. Eisenstein, et al., Astrophys. J. 633 (2005) 560.
[12] M. Doran, S. Stern, E. Thommes, JCAP 0704 (2007) 015.
[13] C.S. Kochaneck, Astrophys. J. 466 (1996) 638;

I. Waga, A.P.M. Miceli, Phys. Rev. D 59 (1999) 103507;
D. Jain, A. Dev, J.S. Alcaniz, Phys. Rev. D 66 (2002) 083511;
A. Dev, D. Jain, J.S. Alcaniz, Phys. Rev. D 67 (2003) 023515;
D. Jain, A. Dev, N. Panchapakesan, S. Mahajan, V.B. Bhatia, Int. J. Mod. Phys.
D 12 (2003) 953;
K.-H. Chae, et al., Phys. Rev. Lett. 89 (2002) 151301;
K.H. Chae, G. Chen, B. Ratra, D.W. Lee, Astrophys. J. 607 (2004) L71.

[14] S. Capozziello, et al., Phys. Rev. D 70 (2004) 123501;
N. Pires, Z.-H. Zhu, J.S. Alcaniz, Phys. Rev. D 73 (2006) 123530, astro-
ph/0606689.

[15] M.A. Dantas, J.S. Alcaniz, D. Jain, A. Dev, Astron. Astrophys. 467 (2007) 421,
astro-ph/0607060.

[16] J. Simon, L. Verde, J. Jimenez, Phys. Rev. D 71 (2005) 123001.
[17] R.G. Abraham, et al., Astron. J. 127 (2004) 2455;

P.J. McCarthy, et al., Astrophys. J. 614 (2004) L9.
[18] Z.L. Yi, T.J. Zhang, Mod. Phys. Lett. A 22 (2007) 41.
[19] F.C. Carvalho, E.M. Santos, J.S. Alcaniz, J. Santos, JCAP 0809 (2008) 008.
[20] W.L. Freedman, et al., Astrophys. J. 553 (2001) 47.
[21] A. Friaca, J. Alcaniz, J.A.S. Lima, Mon. Not. R. Astron. Soc. 362 (2005) 1295,

astro-ph/0504031.
[22] T. Treu, et al., Mon. Not. R. Astron. Soc. 308 (1999) 1037;

T. Treu, et al., Mon. Not. R. Astron. Soc. 326 (2001) 221;
T. Treu, et al., Astrophys. J. Lett. 564 (2002) L13.

[23] R. Jimenez, J. MacDonald, J.S. Dunlop, P. Padoan, J.A. Peacock, Mon. Not. R. As-
tron. Soc. 349 (2004) 240.

[24] R.G. Calberg, et al., Astrophys. J. 462 (1996) 32;
A. Dekel, D. Burstein, S. White, in: N. Turok (Ed.), Critical Dialogues in Cosmol-
ogy, World Scientific, Singapore, 1997.

[25] P.J.E. Peebles, J.T. Yu, Astrophys. J. 162 (1970) 815;
D.J. Eisenstein, W. Hu, Astrophys. J. 496 (1998) 605.


	Current lookback time-redshift bounds on dark energy
	Introduction
	Lookback time-redshift test
	Theory
	Data

	Results
	LambdaCDM
	Joint analysis

	omegaCDM

	Final remarks
	Acknowledgements
	References


