105 research outputs found

    Photonic Band Tuning in 2D Photonic Crystals by Atomic Layer Deposition

    Get PDF
    Atomic layer deposition (ALD) has become a powerful tool for the fabrication of high quality 3-dimentional photonic crystals (PCs) from both inorganic (opal) and organic (holographically patterned polymer) templates [1,2]. With ALD, highly conformal films can be grown with a precision of 0.05 nm, which, when combined with the availability of a wide range of low temperature film growth protocols, enables a high degree of control over material and structural properties to precisely tune optical properties [3]. Two-dimensional photonic crystals have been developed extensively for applications in optical interconnects, beam steering, and sensor devices; and are predominantly fabricated by electron-beam lithography. The optical properties of 2D photonic crystal slab waveguides are determined by the precision of the lithography process, with limited post fabrication tunability

    Desmoplastic myxoid tumor of pineal region, SMARCB1-mutant, in young adult

    Get PDF
    We present a young adult woman who developed a myxoid tumor of the pineal region having a SMARCB1 mutation, which was phenotypically similar to the recently described desmoplastic myxoid, SMARCB1-mutant tumor of the pineal region (DMT-SMARCB1). The 24-year-old woman presented with headaches, nausea, and emesis. Neuroimaging identified a hypodense lesion in CT scans that was T1-hypointense, hyperintense in both T2-weighted and FLAIR MRI scans, and displayed gadolinium enhancement. The resected tumor had an abundant, Alcian-blue positive myxoid matrix with interspersed, non-neoplastic neuropil-glial-vascular elements. It immunoreacted with CD34 and individual cells for EMA. Immunohistochemistry revealed loss of nuclear INI1 expression by the myxoid component but its retention in the vascular elements. Molecular analyses identified a SMARCB1 deletion and DNA methylation studies showed that this tumor grouped together with the recently described DMT-SMARCB1. A cerebrospinal fluid cytologic preparation had several cells morphologically similar to those in routine and electron microscopy. We briefly discuss the correlation of the pathology with the radiology and how this tumor compares with other SMARCB1-mutant tumors of the nervous system

    Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice.

    Get PDF
    Spontaneous mutations in the SHANK-associated RH domain interacting protein (Sharpin) resulted in a severe autoinflammatory type of chronic proliferative dermatitis, inflammation in other organs, and lymphoid organ defects. To determine whether cell-type restricted loss of Sharpin causes similar lesions, a conditional null mutant was created. Ubiquitously expressing cre-recombinase recapitulated the phenotype seen in spontaneous mutant mice. Limiting expression to keratinocytes (using a Krt14-cre) induced a chronic eosinophilic dermatitis, but no inflammation in other organs or lymphoid organ defects. The dermatitis was associated with a markedly increased concentration of serum IgE and IL18. Crosses with S100a4-cre resulted in milder skin lesions and moderate to severe arthritis. This conditional null mutant will enable more detailed studies on the role of SHARPIN in regulating NFkB and inflammation, while the Krt14-Sharpin-/- provides a new model to study atopic dermatitis

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    Get PDF
    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg, indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the Astrophysical Journa

    Kepler-21b: A 1.6REarth Planet Transiting the Bright Oscillating F Subgiant Star HD 179070

    Get PDF
    We present Kepler observations of the bright (V=8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R_Earth object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequencypower spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34{\pm}0.06 M{\circ} and 1.86{\pm}0.04 R{\circ} respectively, as well as yielding an age of 2.84{\pm}0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3{\sigma}) that the transit event is caused by a 1.64{\pm}0.04 R_Earth exoplanet in a 2.785755{\pm}0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of ~10 M_Earth (2-{\sigma}). HD 179070 is the brightest exoplanet host star yet discovered by Kepler.Comment: Accepted to Ap

    Kepler-16: A Transiting Circumbinary Planet

    Get PDF
    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size, and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20% and 69% as massive as the sun, and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5 degree of a single plane, suggesting that the planet formed within a circumbinary disk.Comment: Science, in press; for supplemental material see http://www.sciencemag.org/content/suppl/2011/09/14/333.6049.1602.DC1/1210923.Doyle.SOM.pd

    Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas

    Get PDF
    © The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Infant gliomas have paradoxical clinical behavior compared to those in children and adults: low-grade tumors have a higher mortality rate, while high-grade tumors have a better outcome. However, we have little understanding of their biology and therefore cannot explain this behavior nor what constitutes optimal clinical management. Here we report a comprehensive genetic analysis of an international cohort of clinically annotated infant gliomas, revealing 3 clinical subgroups. Group 1 tumors arise in the cerebral hemispheres and harbor alterations in the receptor tyrosine kinases ALK, ROS1, NTRK and MET. These are typically single-events and confer an intermediate outcome. Groups 2 and 3 gliomas harbor RAS/MAPK pathway mutations and arise in the hemispheres and midline, respectively. Group 2 tumors have excellent long-term survival, while group 3 tumors progress rapidly and do not respond well to chemoradiation. We conclude that infant gliomas comprise 3 subgroups, justifying the need for specialized therapeutic strategies.info:eu-repo/semantics/publishedVersio

    The Spitzer survey of interstellar clouds in the Gould Belt. II. The Cepheus Flare observed with IRAC and MIPS

    Get PDF
    We present Spitzer IRAC (~2 deg^2) and MIPS (~8 deg^2) observations of the Cepheus Flare which is associated with the Gould Belt, at an approximate distance of ~300 pc. Around 6500 sources are detected in all four IRAC bands, of which ~900 have MIPS 24 micron detections. We identify 133 YSO candidates using color-magnitude diagram techniques, a large number of the YSO candidates are associated with the NGC 7023 reflection nebula. Cross identifications were made with the Guide Star Catalog II and the IRAS Faint Source Catalog, and spectral energy distributions (SED) were constructed. SED modeling was conducted to estimate the degree of infrared excess. It was found that a large majority of disks were optically thick accreting disks, suggesting that there has been little disk evolution in these sources. Nearest-neighbor clustering analysis identified four small protostellar groups (L1228, L1228N, L1251A, and L1251B) with 5-15 members each and the larger NGC 7023 association with 32 YSO members. The star formation efficiency for cores with clusters of protostars and for those without clusters was found to be ~8% and ~1% respectively. The cores L1155, L1241, and L1247 are confirmed to be starless down to our luminosity limit of L_bol=0.06 L_sol.Comment: Submitted to ApJSS. 20 figures, 110 page
    corecore