33 research outputs found

    Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna

    Get PDF
    The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure

    Neutrino oscillation studies with IceCube-DeepCore

    Get PDF
    AbstractIceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed

    Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

    Get PDF
    Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of e290 tera-electron volts. Its arrival direction was consistent with the location of a known g-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to g-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy g-rays. This observation of a neutrino in spatial coincidence with a g-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos

    Pengaruh Pemberian Ketotifen terhadap Jumlah Sel Fibroblas dan Kepadatan Sel Kolagen pada Luka Insisi Tikus Wistar

    Get PDF
    Ingga Hadian, S-501202027. PENGARUH PEMBERIAN KETOTIFEN TERHADAP JUMLAH SEL FIBROBLAS DAN KEPADATAN SEL KOLAGEN PADA LUKA INSISI TIKUS WISTAR. Pembimbing I : DR. Untung Alfianto, dr, Sp.Bs, Pembimbing II : dr. Ardana Tri Arianto. Msi. Med. Sp.An-KNA. Program studi Magister Kedokteran Keluarga, Minat Utama Ilmu Biomedik, Fakultas Kedokteran Universitas Sebelas Maret, Surakarta, 2016. Latar Belakang : Sel mast merupakan salah satu yang berperan dalam proses inflamasi pada penyembuhan luka. Sel mast dikaitkan dengan kejadian luka kronis, sehingga sel mast diduga ikut memelihara proses inflamasi secara berlebihan. Hambatan pada degranulasi sel mast diharapkan akan mempercepat penyembuhan luka yang ditandai dengan meningkatnya jumlah sel fibroblas dan kepadatan sel kolagen. Ketotifen mampu mengurangi dreganulasi sel Mast dan mengurangi pelepasan Histamin, protease sel Mast, myeloperoxidase, leukotriens, PAF dan bermacam-macam Prostaglandin. Ketotifen juga menghambat agregasi polimorfonuklear serta mengurangi respon inflamasi dan mempercepat migrasi fibroblas di fase proliferasi. Tujuan :Mengetahui perbedaan jumlah sel fibroblas dan kepadatan sel kolagen pada tikus wistar yang diberikan Ketotifen oral dosis 0.3 mg/kg dibandingkan plasebo pada penyembuhan luka insisi tikus wistar. Metode : Penelitian ini termasuk true eksperimental laboratorik dengan desain Randomized Controlled Trial yang menggunakan tikus wistar sebagai obyek penelitian. 14 tikus Wistar dibagi dalam 2 kelompok, masing masing kelompok terdiri atas 7 tikus Wistar. Kelompok 1 merupakan kelompok kontrol yang dilakukan insisi sepanjang 2cm pada kulit punggung tikus dan diberikan plasebo per oral selama 6 hari. Kelompok 2 merupakan kelompok perlakuan yang dilakukan insisi sepanjang 2cm pada kulit punggung tikus dan diberikan Ketotifen 0,3 mg/kgBB per oral setiap 12 jam selama 6 hari. Analisis data untuk membandingkan rerata antar kedua kelompok yaitu kelompok perlakuan dan kelompok kontrol menggunakan uji independent samples t-test, dengan tingkat kemaknaan p < 0,05 (dikatakan bermakna secara statistik). Hasil : Pada kelompok kontrol didapatkan rerata persentase kepadatan sel kolagen sebesar 26,05 %, sedangkan pada kelompok Ketotifen didapatkan rerata persentase kepadatan sel kolagen sebesar 36,13 %. Untuk jumlah sel fibroblas pada kelompok kontrol didapatkan rerata sebesar 423 per lapang pandang, sedangkan pada kelompok Ketotifen didapatkan rerata sebesar 555,43 per lapang pandang. Kesimpulan : Ketotifen mempercepat penyembuhan luka ditandai dengan peningkatan sel fibroblas dan sel kolagen. Kata Kunci : Sel Mast, Ketotifen, Sel fibroblas, Serabut Kolagen. ABSTRACT Ingga Hadian, S-501202027. EFFECTS OF KETOTIFEN ON FIBROBLAST CELL COUNT AND COLLAGEN DENSITY ON INCISED WISTAR RATS. DR. Untung Alfianto, dr., Sp.BS, dr. Ardana Tri Arianto, Msi, Med, Sp.An-KNA. Background: Mast cells have a pivotal role in every healing process that involves inflammation of the cells, usually in wounds of chronic nature. If the degranulation process of the mast cells are inhibited, the healing process of the wound will accelerate, indicated by a raise in fibroblast cells and collagen density. Ketotifen are shown to inhibit the degranulation process and decreasing the release of histamin, mast cells proteases, myeloperoxidases, leukotriens, PAF, and various prostaglandins. Ketotifen can also inhibit the aggregation of polymorphonuclear cells, increasing the rate of fibroblast migration in the proliferation phase. This study was aimed to identify the effects of ketotifen on fibroblast cell count and collagen density tested on a wistar rats model. Methods: This study was a true laboratoric experimental study with randomized controlled trial using wistar rats model as objects. 14 rats were divided into two groups, each group contained seven rats. The first group was the control group, where the rats were incised 2 cm above the back skin, and were given per oral placebo for 6 days. The second group were given the same treatment, only the rats were given ketotifen 0.3 mg/kg per oral, every 12 hours lasting 6 days. The data were then collected and tested with independent sample t-test, with p value less than 0,05 is statistically significant. Results: In the control group, the mean percentage of the thickest collagen density were marked at 26.05%, whereas in the treatment group collagen density were marked at 36.13%. The mean fibroblast cell count were marked at 423 and 555.43 each viewing field, on the control group and the treatment group respectively. Conclusion: Ketotifen can accelerate the healing process, marked by the significant increase in collagen density and fibroblast cell count. Keywords: mast cells, ketotifen, fibroblast cells, collagen fibers

    The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies

    Get PDF
    We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of ∼27 Crab Units above 1 TeV was measured in very high energy (VHE) γ-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE γ-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE γ-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy γ-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsahovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of ∼25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (δ ⪆ 33) and the size of the emission region (δ-1RB≲ 3.8 × 1013cm) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model.</p

    Neutral pseudoscalar and vector meson masses under strong magnetic fields in an extended NJL model: Mixing effects

    No full text
    Mixing effects on the mass spectrum of light neutral pseudoscalar and vector mesons in the presence of an external uniform magnetic field B→ are studied in the framework of a two-flavor Nambu-Jona-Lasinio (NJL)-like model. The model includes isoscalar and isovector couplings both in the scalar-pseudoscalar and vector sectors, and also incorporates flavor mixing through a 't Hooft-like term. Numerical results for the B dependence of meson masses are compared with present lattice QCD results. In particular, it is shown that the mixing between pseudoscalar and vector meson states leads to a significant reduction of the mass of the lightest state. The role of chiral symmetry and the effect of the alignment of quark magnetic moments in the presence of the magnetic field are discussed

    Charged pseudoscalar and vector meson masses in strong magnetic fields in an extended NJL model

    No full text
    The mass spectrum of π+ and ρ+ mesons in the presence of a static uniform magnetic field B→ is studied within a two-flavor Nambu-Jona-Lasinio-like model. We improve previous calculations, taking into account the effect of Schwinger phases carried by quark propagators and using an expansion of meson fields in terms of the solutions of the corresponding equations of motion for nonzero B. It is shown that the meson polarization functions are diagonal in this basis. Our numerical results for the ρ+ meson spectrum are found to disfavor the existence of a meson condensate induced by the magnetic field. In the case of the π+ meson, π - ρ mixing effects are analyzed for the meson lowest-energy state. The predictions of the model are compared with available lattice QCD results.This work has been partially funded by CONICET (Argentina) under GrantNo. PIP17-700; byANPCyT(Argentina) under Grants No. PICT17-03-0571, No. PICT19-0792, and No. PICT20- 01847; by the National University of La Plata (Argentina) ProjectNo. X824; byMinisterio de Ciencia e Innovación and Agencia Estatal de Investigación (Spain) and European Regional Development Fund Grant No. PID2019– 105439GB-C21; by EU Horizon 2020 Grant No. 824093 (STRONG-2020); and by Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana GVA PROMETEO/2021/083

    Luminous and high-frequency peaked blazars: the origin of the γ-ray emission from PKS 1424+240

    No full text
    International audienceContext. The current generation of ground-based Cherenkov telescopes, together with the LAT instrument on-board the Fermi satellite, have greatly increased our knowledge of γ-ray blazars. Among them, the high-frequency-peaked BL Lacertae object (HBL) PKS 1424+240 (z ≃ 0.6) is the farthest persistent emitter of very-high-energy (VHE; E ≥ 100 GeV) γ-ray photons. Current emission models can satisfactorily reproduce typical blazar emission assuming that the dominant emission process is synchrotron-self-Compton (SSC) in HBLs; and external-inverse-Compton (EIC) in low-frequency-peaked BL Lacertae objects and flat-spectrum-radio-quasars. Alternatively, hadronic models are also able to correctly reproduce the γ-ray emission from blazars, although they are in general disfavored for bright quasars and rapid flares.Aims. The blazar PKS 1424+240 is a rare example of a luminous HBL, and we aim to determine which is the emission process most likely responsible for its γ-ray emission. This will impact more generally our comprehension of blazar emission models, and how they are related to the luminosity of the source and the peak frequency of the spectral energy distribution.Methods. We have investigated different blazar emission models applied to the spectral energy distribution of PKS 1424+240. Among leptonic models, we study a one-zone SSC model (including a systematic study of the parameter space), a two-zone SSC model, and an EIC model. We then investigated a blazar hadronic model, and finally a scenario in which the γ-ray emission is associated with cascades in the line-of-sight produced by cosmic rays from the source.Results. After a systematic study of the parameter space of the one-zone SSC model, we conclude that this scenario is not compatible with γ-ray observations of PKS 1424+240. A two-zone SSC scenario can alleviate this issue, as well as an EIC solution. For the latter, the external photon field is assumed to be the infra-red radiation from the dusty torus, otherwise the VHE γ-ray emission would have been significantly absorbed. Alternatively, hadronic models can satisfactorily reproduce the γ-ray emission from PKS 1424+240, both as in-source emission and as cascade emission.Key words: relativistic processes / BL Lacertae objects: general / BL Lacertae objects: individual: PKS 1424+240 / astroparticle physic
    corecore