6 research outputs found
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions
We review the most important experimental results from the first three years
of nucleus-nucleus collision studies at RHIC, with emphasis on results from the
STAR experiment, and we assess their interpretation and comparison to theory.
The theory-experiment comparison suggests that central Au+Au collisions at RHIC
produce dense, rapidly thermalizing matter characterized by: (1) initial energy
densities above the critical values predicted by lattice QCD for establishment
of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by
constituent interactions of very short mean free path, established most
probably at a stage preceding hadron formation; and (3) opacity to jets. Many
of the observations are consistent with models incorporating QGP formation in
the early collision stages, and have not found ready explanation in a hadronic
framework. However, the measurements themselves do not yet establish
unequivocal evidence for a transition to this new form of matter. The
theoretical treatment of the collision evolution, despite impressive successes,
invokes a suite of distinct models, degrees of freedom and assumptions of as
yet unknown quantitative consequence. We pose a set of important open
questions, and suggest additional measurements, at least some of which should
be addressed in order to establish a compelling basis to conclude definitively
that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
Hadronization geometry from net-charge angular correlations on momentum subspace () in Au-Au collisions at GeV
We present the first measurements of charge-dependent correlations on angular
difference variables (pseudorapidity) and
(azimuth) for primary charged hadrons with transverse momentum GeV/ and from Au-Au collisions at GeV. We observe correlation structures not predicted by theory but
consistent with evolution of hadron emission geometry with increasing
centrality from one-dimensional fragmentation of color strings along the beam
direction to an at least two-dimensional hadronization geometry along the beam
and azimuth directions of a hadron-opaque bulk medium.Comment: 8 pages, 4 figure
Very-High-Resolution SAR Images and Linked Open Data Analytics Based on Ontologies
In this paper, we deal with the integration of multiple sources of information such as Earth observation (EO) synthetic aperture radar (SAR) images and their metadata, semantic descriptors of the image content, as well as other publicly available geospatial data sources expressed as linked open data for posing complex queries in order to support geospatial data analytics. Our approach lays the foundations for the development of richer tools and applications that focus on EO image analytics using ontologies and linked open data. We introduce a system architecture where a common satellite image product is transformed from its initial format into to actionable intelligence information, which includes image descriptors, metadata, image tiles, and semantic labels resulting in an EO-data model. We also create a SAR image ontology based on our EO-data model and a two-level taxonomy classification scheme of the image content. We demonstrate our approach by linking high-resolution TerraSAR-X images with information from CORINE Land Cover (CLC), Urban Atlas (UA), GeoNames, and OpenStreetMap (OSM), which are represented in the standard triple model of the resource description frameworks (RDFs). © 2008-2012 IEEE
Building virtual earth observatories using ontologies, linked geospatial data and knowledge discovery algorithms
Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, satellite image archives have been constantly increasing in size in the last few years (now reaching petabyte sizes), and have become a valuable source of information for many science and application domains (environment, oceanography, geology, archaeology, security, etc.). TELEIOS is a recent European project that addresses the need for scalable access to petabytes of Earth Observation data and the discovery of knowledge that can be used in applications. To achieve this, TELEIOS builds on scientific databases, linked geospatial data, ontologies and techniques for discovering knowledge from satellite images and auxiliary data sets. In this paper we outline the vision of TELEIOS (now in its second year), and give details of its original contributions on knowledge discovery from satellite images and auxiliary datasets, ontologies, and linked geospatial data. © 2012 Springer-Verlag