251 research outputs found

    Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy

    Get PDF
    The development of methods for specific delivery of drugs is an important issue for many cancer therapy approaches. Most of macromolecular drugs are taken into the cell through endocytosis and, being unable to escape from endocytic vesicles, eventually are degraded there, which hinders their therapeutic usefulness. We have developed a method, called photochemical internalization, based on light-induced photochemical reactions, disrupting endocytic vesicles specifically within illuminated sites e.g. tumours. Here we present a new drug delivery concept based on photochemical internalization-principle – photochemical disruption of endocytic vesicles before delivery of macromolecules, leading to an instant endosomal release instead of detrimental stay of the molecules in endocytic vesicles. Previously we have shown that illumination applied after the treatment with macromolecules substantially improved their biological effect both in vitro and in vivo. Here we demonstrate that exposure to light before delivery of protein toxin gelonin improves gelonin effect in vitro much more than light after. However, in vitro transfection with reporter genes delivered by non-viral and adenoviral vectors is increased more than 10- and six-fold, respectively, by both photochemical internalization strategies. The possible cellular mechanisms involved, and the potential of this new method for practical application of photochemical internalization concept in cancer therapy are discussed

    Proteases in cancer drug delivery

    Get PDF
    Whereas protease inhibitors have been developed successfully against hypertension and viral infections, they have failed thus far as cancer drugs. With advances in cancer profiling we now better understand that the tumor "degradome" (i.e. the repertoire of proteases and their natural inhibitors and interaction partners) forms a complex network in which specific nodes determine the global outcome of manipulation of the protease web. However, knowing which proteases are active in the tumor micro-environment, we may tackle cancers with the use of Protease-Activated Prodrugs (PAPs). Here we exemplify this concept for metallo-, cysteine and serine proteases. PAPs not only exist as small molecular adducts, containing a cleavable substrate sequence and a latent prodrug, they are presently also manufactured as various types of nanoparticles. Although the emphasis of this review is on PAPs for treatment, it is clear that protease activatable probes and nanoparticles are also powerful tools for imaging purposes, including tumor diagnosis and staging, as well as visualization of tumor imaging during microsurgical resections

    CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers

    Get PDF
    CD133/prominin-1 is a pentaspan transmembrane glycoprotein overexpressed in various solid tumours including colorectal and glioblastomas. CD133 was found here to be highly expressed in ⩾50% of pancreatic, gastric and intrahepatic cholangiocarcinomas. Quantitative flow cytometric analysis showed that a panel of established hepatocellular, pancreatic and gastric cancer cell lines expressed CD133 at levels higher than normal epithelial cells or bone marrow progenitor cells. A murine anti-human CD133 antibody (AC133) conjugated to a potent cytotoxic drug, monomethyl auristatin F (MMAF), effectively inhibited the growth of Hep3B hepatocellular and KATO III gastric cancer cells in vitro with IC50 values of 2–7 ng ml−1. MMAF induced apoptosis in the cancer cells as measured by caspase activation. The anti-CD133-drug conjugate (AC133-vcMMAF) was shown to internalise and colocalised with the lysosomal marker CD107a in the sensitive cell lines. In contrast, in the resistant cell line Su.86.86, the conjugate internalised and colocalised with the caveolae marker, Cav-1. Addition of ammonium chloride, an inhibitor of lysosomal trafficking and processing, suppressed the cytotoxic effect of AC133-vcMMAF in both Hep3B and KATO III. Anti-CD133-drug conjugate treatment resulted in significant delay of Hep3B tumour growth in SCID mice. Anti-CD133 antibody-drug conjugates warrant further evaluation as a therapeutic strategy to eradicate CD133+ tumours

    Molecular platforms for targeted drug delivery

    Get PDF
    The targeted delivery of bioactive molecules to the appropriate site of action, one of the critical focuses of pharmaceutical research, improves therapeutic outcomes and increases safety at the same time; a concept envisaged by Ehrlich over 100 years ago when he described the "magic bullet" model. In the following decades, a considerable amount of research effort combined with enormous investment has carried selective drug targeting into clinical practice via the advent of monoclonal antibodies (mAbs) and antibody-drug conjugates derivatives. Additionally, a deeper understanding of physiopathological conditions of disease has permitted the tailored design of targeted drug delivery platforms that carry drugs, many copies of the same drug, and different drugs in combination to the appropriate site of action least selectively or preferentially. The acquired know-how has provided the field with the design rationale to develop a successful delivery system that will provide new and improved means to treat many intractable diseases and disorders. In this review, we discuss a wide range of molecular platforms for drug delivery, and focus on those with more success in the clinic, given their potential for targeted therapies

    Receptor crosslinking: a general method to trigger internalization and lysosomal targeting of therapeutic receptor: ligand complexes

    Get PDF
    A major unmet clinical need is a universal method for subcellular targeting of bioactive molecules to lysosomes. Delivery to this organelle enables either degradation of oncogenic receptors that are overexpressed in cancers, or release of prodrugs from antibody–drug conjugates. Here, we describe a general method that uses receptor crosslinking to trigger endocytosis and subsequently redirect trafficking of receptor:cargo complexes from their expected route, to lysosomes. By incubation of plasma membrane receptors with biotinylated cargo and subsequent addition of streptavidin to crosslink receptor:cargo–biotin complexes, we achieved rapid and selective lysosomal targeting of transferrin, an anti-MHC class I antibody, and the clinically approved anti-Her2 antibody trastuzumab. These three protein ligands each target a receptor with a distinct cellular function and intracellular trafficking profile. Importantly, we confirmed that crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines SKBR3 and BT474. These data suggest that crosslinking could be exploited for a wide range of target receptors, for navigating therapeutics through the endolysosomal pathway, for significant therapeutic benefit
    corecore