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A major unmet clinical need is a universal method for 
subcellular targeting of bioactive molecules to  lysosomes. 
Delivery to this organelle enables either degradation of 
oncogenic receptors that are overexpressed in cancers, or 
release of prodrugs from antibody–drug conjugates. Here, 
we describe a general method that uses receptor crosslink-
ing to trigger endocytosis and subsequently redirect traf-
ficking of receptor:cargo complexes from their expected 
route, to lysosomes. By incubation of plasma membrane 
receptors with biotinylated cargo and subsequent addi-
tion of streptavidin to crosslink receptor:cargo–biotin 
complexes, we achieved rapid and selective lysosomal 
targeting of transferrin, an anti-MHC class I antibody, and 
the clinically approved anti-Her2 antibody trastuzumab. 
These three protein ligands each target a receptor with a 
distinct cellular function and intracellular trafficking pro-
file. Importantly, we confirmed that crosslinking of trastu-
zumab increased lysosomal degradation of its cognate 
oncogenic receptor Her2 in breast cancer cell lines SKBR3 
and BT474. These data suggest that crosslinking could be 
exploited for a wide range of target receptors, for navigat-
ing therapeutics through the endolysosomal pathway, for 
significant therapeutic benefit.
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INTRODUCTION
For many therapeutics, delivery to lysosomes must be carefully con-

trolled, either to minimize or to maximize proteolytic degradation 

of the therapeutic, and/or its target. For example, antibodies that 

bind to transferrin receptor (TfR) for delivery across the blood–

brain barrier (BBB) must avoid lysosomal degradation.1–3 On the 

other hand, antibodies that target oncogenic receptors are often 

targeted toward lysosomes in order to provide therapeutic benefits, 

either by depleting the growth-inducing oncogenic receptors or by 

unleashing toxic drugs from antibody–drug conjugates (ADCs).4

In general, the first stage in directing ADCs to these environ-

ments conceptually involves taking the ADC to a cell and then 

exploiting the antibodies’ specificity to bind a receptor that is 

selectively expressed on the diseased cell of choice.4 However, 

specific activity of the ADC within the target cell requires not 

just cell entry at a particular portal, but that the ADC:receptor 

complex traffics to lysosomes,5 where the cytotoxic drug can be 

released into the cytosol and access its target. This is either by 

degradation of the antibody or by cleavage of an antibody–drug 

linker.6–8 Inefficient lysosomal delivery, which in fact is evident for 

many ADCs,9,10 is expected to limit the amount of cytotoxic drug 

released inside tumor cells and result in suboptimal potency.5 To 

date, the only ADCs that have demonstrated sufficient efficacy to 

gain and retain clinical approval are trastuzumab–emtansine and 

brentuximab–vedotin.11

In order to evaluate delivery of exogenous proteins to lysosomes 

within the context of ADCs, we sought to exploit the enhanced 

trafficking to lysosomes that many receptors perform when clus-

tered or crosslinked into “supramultivalent”  interactions. This 

enhanced and sometimes aberrant lysosomal delivery has been 

observed for many receptors,12 including rabies G protein,13 ErbB 

family receptors such as epidermal growth factor receptor,14,15 

acetylcholine  receptors,16,17 and FcRn receptors.18 These findings 

were demonstrated in a range of cell types, including hamster 

kidney,12 mouse neuroblastoma,13 human kidney,14 human epi-

dermal,15 rat muscle,16 Xenopus  muscle,17 and human endothelial 

cells.18 Furthermore, crosslinking was induced in these reports by 

a range of methods, including streptavidin (SA),12,17 bivalent anti-

bodies,13,16,18 natural ligands,14,18 and multivalent designed ankyrin 

repeat proteins (DARPins).15 In the case of CD20 receptors, anti-

body-mediated crosslinking has been utilized to modify cell sig-

naling and drive apoptosis in myeloma cells.19

Surprisingly, despite the need for methods to deliver therapeu-

tic ligands to lysosomes, the possibility of exploiting crosslinking 

for enhancing the uptake and subcellular targeting of therapeutic 

vectors and/or their cognate receptors has not been widely stud-

ied. Here, we demonstrate that we can increase delivery of three 

exogenously administered proteins, targeting distinct receptors, 

to lysosomes by formation of biotin: SA complexes at the plasma 

membrane. To do this, we add exogenous biotinylated antibodies or 

biotinylated protein ligands to cells and optionally induce complex 

formation with SA. By generating proteins that are dual-labeled 

with biotin and fluorophores, and imaging these by live cell confo-

cal microscopy, we observe major differences in intracellular traffic 

of uncomplexed versus complexed proteins. As models to dem-

onstrate this phenomenon, we selected three exogenous protein 
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ligands that either do not traffic to lysosomes in their uncomplexed 

state (transferrin (Tf)) or do so minimally: the anti(MHC I) anti-

body W6/32 and the anti-Her2 antibody trastuzumab (TRz).

The trafficking route of Tf has been extensively character-

ized: It first binds to the TfR, and both then internalize together 

via clathrin-mediated endocytosis,20 which requires the AP2-coat 

complex.21 Following release of bound iron, Tf:TfR is recycled to 

the plasma membrane, where the Tf is then released.22 The ability 

of Tf to recycle has been exploited for delivery of various therapeu-

tics (drugs, genes, proteins) across biological barriers including the 

BBB.23,24 TfR-mediated transport across the BBB occurs via trans-

cytosis, in which TfR:cargo complexes are endocytosed at the api-

cal face of endothelial cells and subsequently recycled at the distal 

basolateral surface. In addition to Tf, antibodies that bind TfR have 

been investigated for their ability to cross this barrier, but these 

efforts have been hindered by trafficking of TfR to  lysosomes.1–3 

An understanding of TfR:cargo trafficking may therefore enable 

us to design improved vectors for delivery of therapeutics into 

the brain via a transcytosis route that avoids lysosomal delivery. 

Other work on TfR trafficking has shown that local clustering of 

TfR increases the rate of endocytosis25 and that lysosomal delivery 

can be induced using a monoclonal bivalent anti-TfR antibody.26

The W6/32 antibody targets the MHC class I complex, which 

localizes predominantly to the plasma membrane.27 In contrast to 

Tf, endocytosis of the anti(MHC I) antibody W6/32 is clathrin 

independent.28–30 A “quality control” mechanism is proposed to 

exist,31 in which loss of β2 microglobulin from the MHC class I 

complex results in clustering of the remaining MHC class I heavy 

chain (which contains the epitope for W6/32)32 and its subsequent 

delivery to lysosomes.33 It has further been shown that induced 

crosslinking of the MHC class I complex causes signaling,34–37 

which may serve as an indicator for the integrity of the MHC class 

I complex. Determining the endocytic fate of complexed W6/32 is 

thus a crucial test of the MHC class I quality control hypothesis.

TRz is a humanized monoclonal antibody that binds to Her2 and 

is used clinically either as an unconjugated antibody (“Herceptin”)38 

or as the ADC TRz-emtansine (“Kadcyla”).39 Her2 is overexpressed 

in 15–20% of diagnosed breast cancers,40,41 where it forms onco-

genic signaling dimers with other, ligand activated, receptors from 

the ErbB family. Her2 is considered to be difficult to deliver to lyso-

somes, firstly because it is resistant to internalization and secondly 

because the majority of endocytosed receptor recycles back to the 

plasma membrane.38,42 Furthermore, patients treated clinically with 

TRz routinely develop resistance to treatment, which prevents Her2 

degradation.43,44 One promising method for overcoming resistance 

to internalization is to induce Her2 clustering,45–50 yet it remains to 

be determined whether SA can be used to deliver Her2:antibody 

complexes to lysosomes for degradation.

Here, we report that targeting cells with biotinylated ligands 

and subsequent addition of SA efficiently targets Tf, W6/32, and 

TRz to lysosomes and also enhances the degradation of Her2 in 

breast cancer cell lines that overexpress this receptor.

RESULTS
We initially investigated whether formation of biotin:SA com-

plexes at the plasma membrane affects the endocytosis and traffic 

of the iron carrying protein Tf. Normally this protein undergoes 

endocytosis via the TfR into clathrin-coated vesicles, is trafficked 

to recycling endosomes, and then recycled back to the plasma 

membrane, thus avoiding delivery to lysosomes.22,51

Dual-labeled Tf (Tf-Bi-647) was generated by reaction of 

Tf-biotin (Tf-Bi) with NHS-Alexa647 (see Supplementary 

Figure  S2 for physical characterization and Supplementary 

Tables S1 and S2 for quantification). Due to the presence of 

multiple biotins per Tf-Bi-647 and multiple biotin-binding sites 

per SA, co-incubation of Tf-Bi-647 and SA to cells could result 

in formation of Tf-Bi-647:SA aggregates in solution.52 This was 

avoided by using a sequential addition protocol53 (Figure 1) that 

involved incubating HeLa cells with Tf-Bi-647, washing to remove 

unbound Tf-Bi-647, and then addition of SA. In order to prevent 

Tf-Bi-647 endocytosis before the addition of SA, incubations with 

Tf conjugates, SA, and SA conjugates were performed on ice.

Initially, it was important to investigate whether biotinylation 

of Tf had any effect on its recycling, and for this, we simultaneously 

compared trafficking of biotinylated (Tf-Bi-647) and unbiotinyl-

ated (Tf-488) forms of this protein. HeLa cells were co-incubated 

with both forms on ice and then incubated at 37 °C for 60 minutes, 

with imaging of the two probes at the indicated time points by 

live cell confocal microscopy. Representative confocal microscopy 

images (Supplementary Figure S3) show that Tf-488 and Tf-Bi-647  

are recycled. In order to quantify the rate of recycling, we cal-

culated the average intensity per pixel in the fluorescent vesicle 

regions using a threshold and background subtraction method as 

described in Supplementary Method 1 and Figure S1. We then 

defined the “normalized intensity” as the intensity relative to the 

mean fluorescence intensity at 10 minutes when the majority of 

Tf has been internalized into early and recycling endosomes. This 

dataset (n = 3) is quantified in Figure 2a which demonstrates that 

Tf-Bi-647 and Tf-488 are recycled out of cells at very similar rates, 

thus biotinylation does not affect the rate of Tf recycling.

In the same experiment, in order to evaluate lysosomal deliv-

ery of exogenously applied fluorescently labeled proteins, cells 

were pulse-chased with the fluid-phase endocytosis probe Dex-

546 (see Materials and Methods) to specifically label lysosomes.54 

Representative images demonstrate that Tf-488 and Tf-Bi-647 

colocalize with each other, but not with Dex-546 labeled lyso-

somes (Supplementary Figure S4). To quantify this, colocaliza-

tion between all pairs of fluorescent labels are represented using 

Pearson’s coefficient (PC), which is calculated as the r value for 

the correlation of pixel intensities between corresponding pixels 

of two images. As expected, Tf-Bi-647 and Tf-488 colocalized 

together (mean PC of 0.65, Figure 2b, green line), and neither 

of these proteins colocalized strongly (PC < 0.35) with pulse-

chased Dex-546 (Figure 2b). In summary, these results dem-

onstrate that biotinylation of Tf did not perturb its endocytic 

traffic and Tf-Bi-647 is recycled rather than being delivered to 

lysosomes.

We then evaluated the capacity of SA-488 to bind Tf-Bi-647 

on the plasma membrane. HeLa cells were labeled by sequential 

addition of Tf-Bi-647 and then fluorescently labeled SA (SA-488) 

at 0 °C. Labeled cells were then incubated at 37 °C for 6 hours with 

regular imaging of the two probes by live cell confocal microscopy. 

Quantitative analyses of these fluorescence images (Figure 2c,d) 

show an increase in normalized intensity for Tf-Bi-647 and 
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SA-488 between 10 and 120 minutes (Figure 2c). This increase 

in the average intensity per pixel in the fluorescent regions above 

threshold suggests that the signal is clustered into fewer organ-

elles. Strong colocalization of Tf-Bi-647 and SA-488 (PC > 0.8, 

Figure 2d, green line) suggests that they remained tightly associ-

ated for the duration of the experiment (6 hours). There was a 

clear time-dependent increase in colocalization of Dex-546 with 

both Tf-Bi-647 and SA-488 to a PC of ~0.9 (Figure 2d), demon-

strating that Tf-Bi-647:SA-488 complexes did not effectively recy-

cle and were trafficked to lysosomes. Representative images after 

10 and 360 minutes of incubation for this experiment are shown 

in Figure 2g,h, which highlight the increased colocalization of 

Tf-Bi-647:SA complexes with Dex-546 in lysosomes between 

these time points.

We simultaneously compared lysosomal delivery of unbioti-

nylated Tf-488 and biotinylated Tf-Bi-647 in the presence of SA 

(Figure 2e,f). HeLa cells were first co-incubated at 0 °C with equal 

concentrations Tf-488 and Tf-Bi-647, washed, and then incubated 

with unlabeled SA. Unbiotinylated Tf-488 was rapidly recycled 

from the cell (Figure 2e, blue line), whereas Tf-Bi-647:SA com-

plexes were retained within the cell (Figure 2e, red line) and 

trafficked to lysosomes (final PC > 0.8, Figure 2f). In Figure 2f, 

colocalization values are not shown for Tf-488 after 60 minutes, 

due to the fact that the majority of it has been recycled from 

the cell. Representative images of Tf-Bi-647(:SA) are shown in 

Supplementary Figure S3 (right-hand column), which highlight 

that addition of SA inhibits recycling of Tf-Bi-647.

We then investigated whether the Tf-Bi-647:SA complexes 

formed at the plasma membrane are internalized, like Tf, via the 

canonical clathrin-mediated endocytosis route. To test this, an 

adapter protein subunit AP2μ2 (which is essential for clathrin-

mediated endocytosis) was depleted in HeLa cells using siRNA.55 

Three AP2μ2 targeting sequences were tested, and western blot-

ting demonstrated that all three effectively depleted the protein 

(Supplementary Figure S5a). We then initially tested whether 

depleting AP2μ2 from cells selectively influenced Tf uptake 

over BSA-488, which is proposed to enter via a different route.56 

Co-incubation of control and AP2μ2-siRNA–treated cells with 

Tf-647 and BSA-488 demonstrated that depletion of AP2μ2 caused 

retention of Tf-647 on the plasma membrane (Supplementary 

Figure S5b), but no visual effects were noted on the localization 

and uptake of BSA-488 between the two cell treatments.

Tf-Bi-647:SA complexes were then generated on the surface 

of control and AP2μ2-depleted HeLa cells by sequential addition 

of Tf-Bi-647 and SA at 0 °C. Cells were then incubated at 37 °C 

for 10 or 60 minutes to permit internalization of the complexes. 

For removal of membrane-bound Tf-Bi-647:SA complexes, the 

cells were then acid washed at pH 4.5 prior to visualization by 

live cell confocal microscopy. Comparison of control cells (GFP-

siRNA, Figure 3a) with AP2μ2-siRNA cells (Figure 3b) reveals 

that depletion of AP2μ2 results in retention of Tf-Bi-647:SA at the 

plasma membrane. This demonstrates that these complexes are, 

like Tf alone, endocytosed by clathrin-mediated endocytosis.

We additionally observed that after the acid wash procedure, 

Tf-Bi-647:SA complexes were still retained on the plasma mem-

brane (Figure 3c), whereas Tf-Bi-647 alone was almost completely 

removed (Figure 3d). This suggests that Tf-Bi-647:SA complexes 

are refractory to acid washing and bound more tightly to cells due 

to increased avidity.

In view of the dramatic mislocalization of Tf caused by 

SA, we investigated whether a similar effect was observed for a 

very different ligand. For this, we selected the W6/32 antibody 

against the MHC class I receptor, which has been documented 

to enter cells via a clathrin-independent endocytic pathway.28–30 A 

Figure 1 Formation of protein–Bi:SA complexes by sequential incubation. (a) Exogenous biotinylated protein is added to cells. (b) Excess 
unbound protein is removed by washing. (c) Streptavidin is added to cells, which has the capacity to cluster receptors by formation of extended cross-
links between receptor:ligand–biotin complexes. (d) Excess streptavidin is removed by washing prior to incubation at 37 °C. Cells are subsequently 
imaged by live cell confocal microscopy to monitor location of the complex in endolysosomal organelles.
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Figure 2 Tf-Bi-647:SA complexes traffic to lysosomes. HeLa cells were pulse-chased with Dex-546 to label lysosomes, and then incubated for 30 
minutes in serum-free media. Cells were then placed on ice and incubated with the following solutions (15 min per incubation step, with PBS washes 
between each incubation): (a and b) co-incubation of 10 μg/ml Tf-Bi-647 and 10 μg/ml Tf-488, (c, d, g, and h) 10 μg/ml Tf-Bi-647, followed by 
incubation with 1 μg/ml SA-488. (e and f) co-incubation of 10 μg/ml Tf-Bi-647 and 10 μg/ml Tf-488, followed by incubation with 1 μg/ml unlabeled 
SA. After incubation on ice, cells were incubated at 37 °C in complete medium and imaged as live cells at the denoted time points. Normalized  
intensity (a, c, and e) represents the average fluorescence intensity per pixel above the threshold and after background subtraction (see 
Supplementary Method 1). Pearson’s coefficients in b, d, and f are a measure of how closely the fluorescent regions of two images overlap. Error 
bars represent SD between mean values for three independent experiments. Representative single slice confocal microscopy images of Tf-Bi-647:SA 
complexes are shown after (g) 10 minutes or (h) 360 minutes. Arrowheads denote vesicles with Tf-Bi-647:SA-488 complexes, and arrows denote 
vesicles containing Tf-Bi-647, SA-488, and Dex-546. Scale bars of top rows (g and h) = 10 μm; bars of bottom rows (g and h) = 5 μm.
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biotinylated anti-MHC class I antibody was further labeled with  

NHS-Alexa488 to generate Bi-anti(MHC I)-488 (Supplementary 

Figure S2 for physical characterization, Supplementary Tables S1 

and S2 for quantification). HeLa cells with lysosomes preloaded 

with Dex-546 were incubated at 37 °C with Bi-anti(MHC I)-488 

for 30 minutes, and then with 0 or 1 μg/ml unlabeled SA for 30 

minutes. After treatment, cells were incubated at 37 °C for 

4  hours, and then imaged by live cell confocal microscopy. For 

visual inspection, the contrast of each image was adjusted post-

acquisition, to evaluate how the antibody is distributed through-

out the cell (Figure 4a). In the absence of SA, there was extensive 

plasma membrane labeling, but a small fraction of the antibody 

had internalized into vesicles (indicated by arrowheads, top row). 

None of these internal structures were found to colocalize with 

lysosomal Dex-546. After 4 hours, plasma membrane labeling was 

still clearly evident, and some of the punctate structures were now 

located in lysosomes. Addition of SA gave a very different profile: 

Bi-anti(MHC I)-488 was localized entirely in punctate structures 

after 30 minutes, and after 4 hours, extensive colocalization was 

observed between the antibody and Dex-546. By examination of 

the wider fields of view for these images (Supplementary Figure 

S6), a complete lack of diffuse plasma membrane staining is evi-

dent for all cells treated with SA after only 30 minutes.

When the unprocessed images from these experiments were 

quantified, the results show that addition of SA results in significantly 

increased normalized intensity of Bi-anti(MHC I)-488 fluorescence 

within cells (Figure 4b; P < 0.001) at 240 minutes. From this, it was 

hypothesized that SA may increase the amount of Bi-anti(MHC 

I)-488 delivered to lysosomes. As PC colocalization values do 

not take total intensity into account, this hypothesis was tested 

by a different approach. The total amount of Bi-anti(MHC I)-488  

in lysosomes was calculated by simultaneous imaging of 

 Dex-546-labeled lysosomes and Bi-anti(MHC I)-488, then calcu-

lating the average fluorescence intensity of Bi-anti(MHC I)-488 in 

the regions that overlap with Dex-546 fluorescence (Figure 4c). SA 

caused a significantly increased delivery of Bi-anti(MHC I)-488 

to lysosomes (P < 0.05) at 240 minutes. This increase in lyso-

somal delivery may be due to enhanced endocytosis of Bi-anti 

(MHC I)-488:SA complexes over Bi-anti(MHC I)-488 alone and/or 

an inhibition of its recycling.

The humanized monoclonal antibody TRz targets Her2, an 

oncogenic receptor tyrosine kinase that is overexpressed in a sig-

nificant number of breast cancer patients. Based on our results 

on complexation of Tf and MHC class I with SA, we investigated 

whether complexation of biotinylated TRz with SA could enhance 

delivery of this antibody to lysosomes and if this could in turn 

degrade the Her2 receptor.

We generated TRz-Bi-647 by reaction of TRz with NHS-Alexa647  

and NHS-biotin, and for an unbiotinylated control, we gen-

erated TRz-488 by reaction of TRz with NHS-Alexa488 (see 

Supplementary Figure S2 for physical characterization and 

Supplementary Table S1 and S2 for quantification). The speci-

ficity of TRz-Bi-647 for Her2-expressing cells was confirmed 

in Supplementary Figure S7, which shows no association of 

TRz-Bi-647 with HeLa cells (which do not express Her2) and 

extensive binding of TRz-Bi-647 to the Her2-expressing cell 

lines SKBR3 and BT474 (ref. 38). As for the previous experi-

ments, the lysosomes of these cells were labeled by pulse- 

chasing with  Dex-546. Antibody trafficking was then evaluated 

by co- incubation with TRz-488 and TRz-Bi-647 for 30 minutes, 

followed by addition of 0 or 1 μg/ml SA prior to washing and 

incubating the cells for a further 7 hours at 37 °C. Live cell confo-

cal microscopy analysis was performed at the end of this incu-

bation period. For display of TRz-Bi-647 images only, contrast 

settings were adjusted for each image post-acquisition, so that the 

distribution of fluorescence can be seen both for low-intensity 

and for high-intensity images. For both fluorescent TRz variants, 

delivery to lysosomes was observed through colocalization with 

Dex-546. Comparative analysis showed that in both cells lines, 

in the presence or absence of SA, the localization and intensity 

of TRz-488 was unchanged, and the antibody was located both 

on the plasma membrane and in intracellular vesicles (Figure 5a 

left-hand column, wider views in Supplementary Figure S8 

left-hand column). However, in both cell lines, addition of SA 

caused TRz-Bi-647 to redistribute from the plasma membrane 

to vesicular structures (Figure 5a second column, wider views in 

Supplementary Figure S8 second column). The data therefore 

indicate that SA:biotin complexation selectively increased the 

total amount of TRz-Bi-647 that was delivered to lysosomes within 

this 7-hour period. This hypothesis was tested quantitatively as 

Figure 3 Endocytosis of Tf-Bi-647:SA complexes is inhibited in AP2μ2-depleted cells. HeLa cells were mock-treated with anti-GFP siRNA or treated 
with anti-AP2μ2 siRNA (see Materials and Methods). Cells were incubated at 0 °C with 20 μg/ml Tf-Bi-647 for 15 minutes, washed, then incubated 
at 0 °C with 1 μg/ml SA for 15 minutes. After washing, cells were incubated at 37 °C for the indicated time. All cells were acid washed (see Materials 
and Methods) immediately prior to imaging of live cells by confocal microscopy. Representative single slice images are shown. Bar = 10 μm (a and 
b) or 30 μm (c and d).
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described for Bi-anti(MHC I)-488, by using Dex-546 channel 

images to determine lysosomal regions, and then determin-

ing the total TRz intensity in these regions (Figure  5b,c). This 

demonstrated that SA significantly increased delivery of biotinyl-

ated TRz-Bi-647 to lysosomes by 145% in BT474 cells and 175% 

in SKBR3 cells. In contrast, lysosomal delivery of unbiotinylated 

TRz-488 was not significantly altered by addition of SA. As a 

further internal control, changes in the intensity of TRz-488 and 

TRz-Bi-647 in lysosomes were calculated from the same set of 

three-channel (488/546/647 nm) images.

As TRz-Bi-647:SA enhanced lysosomal delivery in BT474 and 

SKBR3 cells, we investigated whether this caused increased degra-

dation of Her2 and a concomitant reduction in total Her2 levels. 

For this, we lysed both these cell types at the end of the TRz-Bi-647 

+/- SA incubation period and detected Her2 by western blotting 

(Figure 6a). As has previously been reported for unconjugated 

TRz,57–59 TRz-Bi-647 alone caused a decrease in Her2 levels that 

was decreased further in cells treated with both TRz-Bi-647 and 

SA. Quantitative analysis of this data (Figure  6b,c) reveals that 

treatment with TRz-Bi-647:SA complexes caused a significant 

decrease in Her2 levels (to 34% in BT474 cells, 66% in SKBR3 

cells) relative to treatments with TRz-Bi-647 alone. In order to 

evaluate the duration of Her2 depletion, we used TRz-488 as a 

marker and confocal microscopy, to measure the amount of Her2 

at the plasma membrane of SKBR3 and BT474 cells at various 

time intervals after the addition of SA to induce crosslinking and 

depletion. The images and quantification of the data are shown 

in Supplementary Figure S9. These demonstrate that plasma 

membrane Her2 levels had recovered to those of untreated cells 

48 hours after crosslinking-induced depletion, consistent with a 

previous in vivo study.45

DISCUSSION
In this study, we have demonstrated for three distinct protein 

ligands that formation of receptor:[protein ligand]:SA complexes 

drives internalization and endocytic trafficking to lysosomes. 

We propose that this is a common response to receptor cross-

linking and a mechanism with wide-ranging implications espe-

cially within the field of biomolecular targeting and delivery of 

biotherapeutics.

We provide evidence that SA crosslinks multiple biotinylated 

ligands on the plasma membrane and that this has a significant 

influence on the way they are processed by the cell within the 

endolysosomal system. The fact that membrane-bound Tf-Bi-647: 

SA complexes are resistant to acid washing suggests that a net-

work of Tf ligands may be formed through SA crosslinking at 

the plasma membrane. A multivalent network is likely to have 

increased avidity for TfRs, and this crosslinking model is consis-

tent with multiple reports of membrane receptors that traffic to 

lysosomes when crosslinked.12–18,60–62 Here, we propose that cross-

linking of exogenous proteins on the cell membrane could be 

used as a general strategy for enhancing delivery of therapeutics 

to lysosomes.

Although evidence for crosslinking is provided, the extent of 

complex formation is unclear. The dependence of Tf-Bi-647:SA 

uptake on AP2μ2 suggests that crosslinked Tf still requires the 

clathrin machinery to mediate its endocytosis. Clathrin-coated 

vesicles are normally 60–120 nm in diameter,63 which suggests 

that crosslinked Tf does not form clusters larger than this. Further 

electron microscopy or single-molecule total-internal reflection 

Figure 4 SA induces delivery of Bi-anti(MHC I)-488 to lysosomes. HeLa 
cells were pulse-chased with Dex-546 to label lysosomes, then labeled 
sequentially with Bi-anti(MHC I)-488, followed by 0 or 1 μg/ml SA.  
Cells were washed and then incubated at 37 °C for 240 minutes, with 
live cells imaged at the denoted time points by confocal microscopy. Five 
or more images were taken at each time point shown. (a) Representative 
single slice confocal images of Bi-anti(MHC I)-488 and Dex-546, ± SA, 
at 30-minute and 4-hour time points. Note that intensities in the left 
column have been enhanced postacquisition and so cannot be directly 
compared. Arrowheads denote non-colocalized vesicles and arrows 
denote colocalized vesicles. Bar = 5 μm. (b) Normalized intensity analy-
sis of raw Bi-anti(MHC I)-488 images in the presence and absence of SA. 
All values are normalized relative to the intensity of Bi-anti(MHC I)-488  
without SA at 240 minutes. (c) Bi-anti(MHC I)-488 intensity in lyso-
somes was calculated as total 488 fluorescence intensity in Dex-546-
labeled regions, with corresponding background fluorescence intensity 
subtracted (see Supplementary Method 2). All values are normal-
ized relative to the intensity of Bi-anti(MHC I)-488(:SA) at 240 minutes. 
Error bars represent SD between mean normalized values of three inde-
pendent experiments. P values were calculated using one-tailed paired 
Student’s t-test. *P < 0.05, **P < 0.01.
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fluorescence data will be required to determine the size and distri-

bution of the complexes formed at the plasma membrane and to 

further characterize early and late endocytic events.

The data provided in this study add further evidence to a hypoth-

esis that endocytosis and lysosomal delivery are common responses 

to clustering of receptors and that these are independent of the inter-

nalization mechanism. The MHC class I receptor has been shown 

to enter cells via a clathrin-independent route involving the small 

GTPase Arf6 (refs. 28–30). These studies showed that once inter-

nalized, the same W6/32 antibody is delivered to late endosomes 

or recycled. Here, we show that biotinylation of this antibody and 

addition of SA enhanced delivery of the antibody:receptor complex 

to lysosomes. This supports the previously stated hypothesis that 

clustered MHC class I molecules are targeted for degradation as 

part of a quality control mechanism that monitors the integrity of 

[MHC class I]:[β2 microglobulin] complexes.31

Figure 5 SA selectively increases delivery of TRz-Bi-647 to lysosomes. Dex-546 loaded SKBR3 and BT474 cells were co-incubated at 37 °C with 
TRz-488 and TRz-Bi-647, then with 0 or 1 μg/ml SA prior to incubation at 37 °C for 7 hours. Wash steps were included between each incubation. 
Single slice confocal microscopy images of the three fluorophores in live cells were then acquired. (a) Representative fluorescence microscopy 
images; arrows denote colocalization of Dex-546 with TRz-488. Contrast settings were automatically adjusted individually for each image. 
Bar = 5 μm. (b) TRz-488 or (c) TRz-Bi-647 intensity in lysosomes was calculated as total 488/647 fluorescence intensity in Dex-546-labeled 
regions, with corresponding background fluorescence intensity subtracted (see Supplementary Method 2). All values are normalized to the 
corresponding -SA condition. Bars represent SD between mean normalized values of three independent experiments. P values were calculated 
using one-tailed paired Student’s t-test.
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The disruption of recycling presented here may have important 

implications for transcytosis of therapeutic cargo across biological 

barriers. Within this field, a great deal of investment has focused 

on exploiting Tf and the TfR for delivery across the BBB.23,24 Our 

observations raise the possibility that current attempts to deliver 

drugs across the BBB using multivalent systems are compromised 

by trafficking to lysosomes, thus significantly reducing the frac-

tion that is transcytosed to the brain parenchyma. It has been 

reported that transcytosis of anti-TfR antibodies from the api-

cal to the basolateral component of the BBB may be enhanced by 

using antibodies with low receptor affinities1 or reduced valency 

to the TfR.2,3 In both cases, enhanced transcytosis may be caused 

by reduced receptor crosslinking.

Crosslinking could be a valuable strategy for improving deliv-

ery of ADCs to lysosomes. In order to optimize the proof-of-prin-

ciple strategy described in this paper for therapeutic purposes, a 

range of improvements can be considered. For example, immuno-

genicity could be minimized by using less immunogenic variants 

of SA.64 Alternatively, crosslinking could be achieved by adminis-

tration of multiple antibodies that bind to different epitopes of the 

same receptor.46–48 This is the likely mechanism underpinning the 

MARIANNE trial,65 in which the anti-Her2 ADC Kadcyla is dosed 

simultaneously with Pertuzumab, a second anti-Her2 antibody 

that binds a nonoverlapping epitope to that of Kadcyla.66 Based 

on our observations, it is expected that simultaneous addition of 

these two antibodies will induce synergistic crosslinking of Her2 

receptors, resulting in lysosomal delivery of Kadcyla and release of 

its cytotoxic payload. It is likely that many potential ADCs under-

perform due to the fact that the receptor:ADC complex does not 

internalize efficiently. Furthermore, complexes that do internalize 

may recycle back to the plasma membrane rather than traffic to 

lysosomes, which is the target organelle for optimal drug release.

Although TRz drives downregulation of Her2 in vitro,57–59 TRz 

alone is insufficient to reduce Her2 levels in vivo, because tumors 

develop resistance to this treatment.43 We demonstrate for the first 

time that a Bi:SA crosslinking strategy causes a greater reduction 

in Her2 levels than treatment with TRz-Bi-647 alone. Further work 

will be required to determine if this is sufficient to overcome resis-

tance to Her2 degradation in vivo. In support of this hypothesis, a 

previous report showed that a similar TRz-Bi:SA system induced 

endocytosis of the antibody in vitro and in vivo.45 Our results fur-

ther strengthen this work by demonstrating both lysosomal deliv-

ery of TRz-Bi:SA complexes and degradation of the receptor.

An established method for drug delivery is to package drugs 

into nanoparticles that are coated with ligands, in order to 

enable selective binding to a target receptor and thus the target 

cell.67 Based on the data in this paper, we predict that the pres-

ence of multiple receptor-binding ligands on the surface of a 

nanoparticle is likely to induce receptor crosslinking, which 

may result in enhanced endocytosis and lysosomal delivery of 

nanoparticle:receptor complexes. Careful consideration should 

therefore be made when designing the number of receptor bind-

ing ligands on a nanoparticulate system.

The strategy described herein could be applied to a range of onco-

genic receptors. Our data indicate that crosslinking of receptors using 

SA has broad potential for cancer therapy, by enabling improved sub-

cellular targeting of ADCs and by driving degradation of oncogenic 

receptors. It remains to be determined how ubiquitous this response 

Figure 6 Delivery of TRz-Bi-647 to lysosomes downregulates total Her2 levels. SKBR3 and BT474 cells were incubated sequentially for 30 minutes 
at 37 °C with 0 (untreated) or 50 nmol/l TRz-Bi-647, then for 30 minutes at 37 °C with 0 or 1 μg/ml SA, followed by incubation at 37 °C for 7 hours. 
Wash steps were included between each incubation. Cell lysates were harvested and probed for total Her2 and β-actin levels by western blotting and 
chemiluminescence detection. Incubations and analysis were repeated in duplicate on three separate cell passages. (a) Representative immunoblot-
ting from a single experiment performed in duplicate. (b and c) Analysis of Her2 intensities relative to β-actin in (b) BT474 cells (c) SKBR3 cells relative 
to a β-actin control. Bars represent SD, and P values represent variation between the mean of three independent experiments. *P < 0.05, **P < 0.01.
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is among plasma membrane proteins, but the data provide strong 

pointers toward how designed ligand:receptor clusters could be uti-

lized to alter cell trafficking pathways for therapeutic gain. In turn, by 

specifically avoiding receptor clustering, it may be possible to direct 

biomolecules away from degradative pathways, leading to pathway 

switching by design for new pharmaceutical entities.

MATERIALS AND METHODS
Materials. Transferrin-Alexa488 (Tf-488), transferrin-Alexa647 

 (Tf-647), 10 kDa dextran-Alexa546 (Dex-546), SA-Alexa488 (SA-488),  

BSA-Alexa647 (BSA-647), Dulbecco’s Modified Eagle’s Medium (DMEM), 

phenol red-free DMEM with 25 mmol/l 4-(2-hydroxyethyl)piperazine-

1-ethanesulfonic acid (HEPES), trypsin/ethylenediaminetetraacetic acid, 

and serum were purchased from Fisher Scientific (Loughborough, UK). 

Transferrin-biotin (Tf-Bi), unlabeled recombinant SA, bovine serum albu-

min (BSA), and all other chemicals were purchased from Sigma Aldrich 

(Gillingham, UK) unless otherwise stated.

Generation of Tf-Bi-647. Lyophilized Tf-Bi (5 mg) suspended in 1 ml 

phosphate-buffered saline (PBS) pH 7.4, was added directly to 1 mg 

NHS-Alexa647 (Fisher Scientific) and reacted for 1 hour at room tem-

perature to generate Tf-Bi-647. The conjugate was purified from unreacted 

Alexa647 into PBS pH 7.4 using a G-50 sephadex gel filtration column 

(Life Technologies, Paisley, UK).

Generation of Bi-anti(MHC I)-488. Biotinylated anti-MHC class I anti-

body W6/32 (50 μg in 100 μl; eBioscience, Hatfield, UK) was reacted with 

0.1 mg tetrafluorophenyl-Alexa488 (two vials from a TFP-Alexa488 label-

ing kit; Life Technologies) for 1 hour at room temperature, then purified by 

gel filtration into PBS pH 7.4, as per the kit instructions.

Generation of TRz-Bi-647. TRz formulation (containing 21 mg/ml TRz, 

l-histidine HCl, l-histidine, α,α-trehalose dehydrate, and polysorbate 

20) was kindly donated by the Velindre Cancer Centre (Cardiff, UK). 

This patient TRz formulation (1.5 ml, 32 mg TRz) was buffer exchanged 

into PBS pH 7.4, by sequential use of two 10 ml Zeba Spin desalting col-

umns (Fisher Scientific). From the 1.7 ml of TRz that was eluted, 1.6 ml 

(30 mg) was added directly to 1 mg NHS-Alexa647, and the other 100 μl 

was retained for generation of TRz-488 (see below). NHS-biotin, 1 mg 

(Fisher Scientific) was solubilized in 1 ml of PBS pH 7.4, and 400 μl of this 

was immediately added to the solution of TRz and NHS-Alexa647 (final 

volume 2 ml). The mixture was left to react for 1 hour at room temperature 

without agitation to generate TRz-Bi-647. The conjugate was purified using 

two 10 ml Zeba Spin desalting columns (1 ml sample per column) in PBS 

pH 7.4, then filtered using a 0.2 μm filter (Millipore, Nottingham,  UK).

Generation of TRz-488. TRz, 100 μl in PBS pH 7.4, was reacted with 

0.1 mg tetrafluorophenyl-Alexa488 (two vials from a TFP-Alexa488 label-

ing kit; Life Technologies) for 1 hour at room temperature and then puri-

fied by gel filtration into PBS pH 7.4, as per the kit instructions.

Characterization of conjugated proteins. After purification, conjugated 

proteins were aliquotted into PCR tubes, frozen in liquid nitrogen, and 

stored at −20 °C prior to analysis. UV-visible absorbance spectra were 

obtained using a Jasco V-650 UV-Vis spectrophotometer. Biotin concen-

trations were calculated using a Sensolyte HABA Biotin Quantification Kit 

(Anaspec, Seraing, Belgium).

Cell culture and sources. All cell lines were obtained from ATCC and 

routinely tested for mycoplasma infection. Cell lines were maintained as a 

subconfluent monolayer in complete medium: DMEM supplemented with 

10% (v/v) heat-inactivated fetal calf serum (Gibco, Fisher Scientific). Cells 

were maintained in a humidified 5% CO
2
 incubator at 37 °C. For live cell 

imaging, cells were seeded onto 35 mm imaging dishes (MatTek, Ashland, 

MA), and for western blotting, cells were seeded into a six-well plate. For 

siRNA transfection studies, 150,000 cells were seeded per dish per well, 

and for all other studies, cells were seeded to 80–90% confluency. HeLa 

cells were left for a minimum of 16 hours to adhere, and SKBR3 and BT474 

cells were left for a minimum of 36 hours to adhere. With the exception of 

incubations performed on ice, all incubations of live cells were performed 

in a humidified 37 °C, 5% CO
2
 incubator.

Dex-546 labeling of lysosomes. Lysosomes were labeled by pulse-chasing 

with 200 μg/ml of the fluid-phase endocytic probe Dex-546 (ref. 54). For 

this, cells were pulsed with Dex-546 in complete medium, and the probe 

was subsequently chased in dextran-free complete medium. HeLa cells 

were pulsed for 4 hours and chased for 16 hours. SKBR3 and BT474 cells 

were pulsed for 14 hours and chased over the duration of the experiment.

Sequential labeling of HeLa cells with Tf-Bi-647 and SA. HeLa cells were 

incubated for 30 minutes in serum-free medium (phenol red-free DMEM 

pH 7.4, containing 25 mmol/l HEPES, supplemented with 1 mg/ml BSA) 

to allow recycling of serum-derived transferrin. Cells were placed on ice 

for 15 minutes to inhibit endocytosis, incubated with 20 μg/ml Tf-Bi-647 

in ice-cold serum-free medium for 15 minutes and then washed 3× in 

ice-cold PBS pH 7.4. Cells were then incubated with 0 or 1 μg/ml SA in 

ice-cold serum-free medium, and then washed 3× in PBS pH 7.4. Cells 

were finally incubated in pre-warmed imaging medium (phenol red-free 

DMEM pH 7.4, containing 25 mmol/l HEPES supplemented with 10% 

(v/v) heat-inactivated fetal calf serum) and analyzed at the indicated time-

points by live cell confocal microscopy.

Sequential labeling of HeLa cells with Bi-anti(MHC I)-488 or BT474/
SKBR3 cells with TRz-Bi-647. Cells were treated with a total of 50 nmol/l 

antibody in imaging medium for 30 minutes at 37 °C, then washed 3× 

in PBS pH 7.4. This was followed by incubation with 0 or 1 μg/ml SA in 

imaging medium for 1 hour at 37 °C, and then washed 3× with PBS pH 7.4. 

After subsequent incubation in imaging medium for the indicated time 

periods, cells were either imaged by live cell confocal microscopy or were 

lysed for western blotting.

Microscopy. Cells were analyzed on a Leica SP5 confocal laser-scan-

ning microscope equipped with a 488 nm Ar laser, 543/633 nm HeNe 

laser, 63 × 1.4 NA objective utilizing Leica Type F immersion oil. A 

1.5 times zoom was used except where otherwise indicated, produc-

ing a pixel size of 160 × 160 nm through a 95.5 μm pinhole. Alexa488, 

Alexa546, and Alexa647 were excited using 488, 543, and 633 nm lasers, 

respectively. Line-by-line generated images were acquired by simulta-

neous excitation at 488 and 633 nm, followed by excitation at 543 nm 

(15 ms per line). Single slice images of cells were taken ~1 μm above 

the coverslip. For each displayed time point, ≥5 distinct fields of view 

(each containing ~5 cells) were imaged. All microscopy imaging was 

performed on live cells.

Microscopy analysis: colocalization. Within a field of view, cell–cell varia-

tion in the total amount of fluorescence intensity could cause unrepresen-

tatively low PC values. To avoid this, regions of interest from individual 

cells were manually selected using the DIC image as a guide, while ensur-

ing that the selected area was a minimum of 2,000 square pixels. PC values 

were calculated for each cell using the JaCOP ImageJ plugin.68 PC values 

were obtained for ≥8 cells per time point, and the mean values plotted. 

SD, where shown, was calculated for the variation between mean values of 

three independent experiments.

Microscopy analysis: calculation of normalized intensities. A “normalized 

intensity” value was calculated to quantify how the average fluorescence 

intensity per pixel of fluorescent vesicle regions changes over time. Full details 

are provided in Supplementary Method 1. Briefly, an automated script was 

written to detect fluorescent regions and calculate the average fluorescence 
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intensity per pixel in these regions. SD, where shown, was calculated for the 

variation between mean values of three independent experiments.

Microscopy analysis: calculation of normalized intensity in lysosomes. 
The amount of protein delivered to lysosomes was estimated by determin-

ing the amount of labeled protein fluorescence in lysosomal regions, and 

full methodological details are provided in Supplementary Method 2. 

Briefly, fluorescence microscopy images of Dex-546 and labeled protein 

were captured simultaneously; the Dex-546 image was used to identify 

lysosomal regions, and mean protein fluorescence intensity within these 

lysosomal regions was then calculated. SD, where shown, was calculated 

for the variation between mean values of three independent experiments.

siRNA depletion of AP2μ2 in HeLa cells. Cells were transfected with 

100 nmol/l siRNA targeting AP2μ2 (5′-AAGUGGAUGCCUUUCGGGU 

CA-3′) or GFP (5′-GGCUACGUCCAGGAGCGCA-3′) using oligo-

fectamine (Life Technologies) as described previously.69 Experimental 

conditions for achieving and evaluating siRNA depletion are provided 

in Supplementary Methods 3 and 4. siRNA-treated cells were labeled 

with Tf-Bi-647:SA complexes and incubated in imaging medium as 

described above. Cells were washed 3× in ice-cold PBS pH 7.4, before 

incubating with ice-cold acid wash solution (500 mmol/l NaCl, 50 

mmol/l MES (4-morpholineethanesulfonic acid), pH 4.5) for 2 minutes 

to remove surface-bound protein.67 Cells were washed 3× in PBS pH 7.4, 

placed in imaging medium and then immediately analyzed by confocal 

microscopy.

Western blotting. A detailed description for blotting and analysis is given 

in Supplementary Method 5. After blotting onto polyvinylidene fluoride 

membranes, receptors were probed using the following primary anti-

bodies: Her2 (2242; Cell Signaling, Danvers, MA), AP2μ2 (611351; BD 

Bioscience, Oxford, UK), clathrin heavy chain (610499; BD Bioscience), 

glyceraldehyde 3-phosphate dehydrogenase (2118S; Cell Signaling), or 

β-actin (AC-15; Sigma Aldrich). Primary antibodies were detected with 

a corresponding horseradish peroxidase conjugated secondary antibody 

(Fisher Scientific). Horseradish peroxidase was probed using ClarityTM 

Western Enhanced Chemiluminescence substrate (Bio-Rad, Hemel 

Hempsted, UK) and detected using a ChemiDoc XRS system (Bio-Rad).

Statistical analysis. For all statistical analysis, data were obtained from 

three independent experiments (n = 3), and significance values were cal-

culated using a paired Student’s t-test.

SUPPLEMENTARY MATERIAL
Figure S1. Automated calculation of normalized intensity.
Figure S2. UV-visible absorbance spectrum of synthesized protein 
conjugates.
Figure S3. Recycling of Tf-488 and Tf-Bi-647 and cellular retention of 
Tf-Bi-647(:SA) in HeLa cells.
Figure S4. After 10 minutes of internalization, Tf-488 and Tf-Bi-647 
colocalize together, but not with lysosomes.
Figure S5. Depletion of AP2μ2 by siRNA and inhibition of Tf uptake 
in HeLa cells.
Figure S6. Internalization of Bi-anti(MHC I)-488 complexes in HeLa 
cells is dramatically enhanced by addition of SA.
Figure S7. TRz-Bi-647 selectively binds to cells that express Her2.
Figure S8. SA selectively increases delivery of TRz-Bi-647 to lysosomes.
Figure S9. Rate of recovery of Her2 at the plasma membrane, follow-
ing depletion with TRz-Bi-647 and SA.
Table S1. Analysis of UV-visible spectra.
Table S2. Analysis of biotinylation quantification.
Supplementary Method 1. Calculation of normalized intensities.
Supplementary Method 2. Calculation of normalized Intensity in 
lysosomes.
Supplementary Method 3. siRNA depletion of AP2μ2 in HeLa cells.
Supplementary Method 4. Evaluation of siRNA depletion of AP2μ2.
Supplementary Method 5. Western blotting and immunodetection.

Supplementary Method 6. Recovery of Her2 at the plasma mem-
brane following depletion with TRz-Bi-647 and SA.
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