45 research outputs found

    Indicators of healthy architecture: A systematic literature review

    Get PDF
    The design of the built environment plays an important role as a determinant of health. As a society, we are spending an increasing proportion of our time indoors and now spend over 80% of our life inside, so the design of buildings can greatly impact on human health. Accordingly, architecture health indices (AHIs) are used to evidence the effects on human health associated with the design of buildings. AHIs provide quantitative and empirical data upon which architects, clients, users and other stakeholders might monitor and evaluate the healthiness (or otherwise) of architectural design. A systematic literature review was conducted to reveal the current state of knowledge, reveal gaps, explore potential usage and highlight best practice in this area. Whilst there are a number of different health indicators for the built/urban environments more generally, the scope of this review is limited to the scale of a building and specifically those aspects within the remit of a professional architect. In order to examine the range and characteristics of AHIs currently in use, this review explored three electronic bibliographic databases from January 2008 to January 2019. A two-stage selection was undertaken and screening against eligibility criteria checklist carried out. From 15 included studies, 127 documents were identified, and these included 101 AHI. A sample of the most commonly used AHIs was then analysed at an item level. The review reveals that most AHIs are limited to measuring communicable diseases that directly affect physical health through e.g. air quality or water quality. There are very few indicators focusing on factors affecting mental and social health; given the increase in mental and social health problems, greater focus on AHIs related to these health issues should be included. Furthermore, the research reveals an absence of AHIs that address non-communicable diseases (NCDs). As the majority of all poor health outcomes globally are now related to NCDs, and many are associated with the design of the built environment, there is an urgent need to address this situatio

    The Selectivity and Functional Connectivity of the Anterior Temporal Lobes

    Get PDF
    One influential account asserts that the anterior temporal lobe (ATL) is a domain-general hub for semantic memory. Other evidence indicates it is part of a domain-specific social cognition system. Arbitrating these accounts using functional magnetic resonance imaging has previously been difficult because of magnetic susceptibility artifacts in the region. The present study used parameters optimized for imaging the ATL, and had subjects encode facts about unfamiliar people, buildings, and hammers. Using both conjunction and region of interest analyses, person-selective responses were observed in both the left and right ATL. Neither building-selective, hammer-selective nor domain-general responses were observed in the ATLs, although they were observed in other brain regions. These findings were supported by “resting-state” functional connectivity analyses using independent datasets from the same subjects. Person-selective ATL clusters were functionally connected with the brain's wider social cognition network. Rather than serving as a domain-general semantic hub, the ATLs work in unison with the social cognition system to support learning facts about others

    Processing speed and the relationship between Trail Making Test-B performance, cortical thinning and white matter microstructure in older adults

    Get PDF
    Part B of the Trail Making Test (TMT-B) is widely used as a quick and easy to administer measure of executive dysfunction. The current study investigated the relationships between TMT-B performance, brain volumes, cortical thickness and white matter water diffusion characteristics in a large sample of older participants, before and after controlling for processing speed. Four hundred and eleven healthy, community-dwelling older adults who were all born in 1936 were assessed on TMT-B, 5 tests of processing speed, and provided contemporaneous structural and diffusion MRI data. Significant relationships were found between slower TMT-B completion times and thinner cortex in the frontal, temporal and inferior parietal regions as well as the Sylvian fissure/insula. Slower TMT-B completion time was also significantly associated with poorer white matter microstructure of the left anterior thalamic radiation, and the right uncinate fasciculus. The majority of these associations were markedly attenuated when additionally controlling for processing speed. These data suggest that individual differences in processing speed contribute to the associations between TMT-B completion time and the grey and white matter structure of older adults

    A transgenic mouse line for collecting ribosome-bound mRNA using the tetracycline transactivator system. Frontiers in molecular neuroscience

    No full text
    Acquiring the gene expression profiles of specific neuronal cell-types is important for understanding their molecular identities. Genome-wide gene expression profiles of genetically defined cell-types can be acquired by collecting and sequencing mRNA that is bound to epitope-tagged ribosomes (TRAP; translating ribosome affinity purification). Here, we introduce a transgenic mouse model that combines the TRAP technique with the tetracycline transactivator (tTA) system by expressing EGFP-tagged ribosomal protein L10a (EGFP-L10a) under control of the tetracycline response element (tetO-TRAP). This allows both spatial control of EGFP-L10a expression through cell-type specific tTA expression, as well as temporal regulation by inhibiting transgene expression through the administration of doxycycline. We show that crossing tetO-TRAP mice with transgenic mice expressing tTA under the Camk2a promoter (Camk2a-tTA) results in offspring with cell-type specific expression of EGFP-L10a in CA1 pyramidal neurons and medium spiny neurons in the striatum. Co-immunoprecipitation confirmed that EGFP-L10a integrates into a functional ribosomal complex. In addition, collection of ribosome-bound mRNA from the hippocampus yielded the expected enrichment of genes expressed in CA1 pyramidal neurons, as well as a depletion of genes expressed in other hippocampal cell-types. Finally, we show that crossing tetO-TRAP mice with transgenic Fos-tTA mice enables the expression of EGFP-L10a in CA1 pyramidal neurons that are activated during a fear conditioning trial. The tetO-TRAP mouse can be combined with other tTA mouse lines to enable gene expression profiling of a variety of different cell-types

    Cardiac structure and function characterized across age groups and between sexes in healthy wild-born captive chimpanzees (Pan troglodytes) living in sanctuaries

    No full text
    Objective: To comprehensively characterize cardiac structure and function, from infancy to adulthood, in male and female wild-born captive chimpanzees (Pan troglodytes) living in sanctuaries. Animals: 290 wild-born captive chimpanzees. Procedures: Physical and echocardiographic examinations were performed on anesthetized chimpanzees in 3 sanctuaries in Africa between October 2013 and May 2017. Results were evaluated across age groups and between sexes, and potential differences were assessed with multiple 1-way independent Kruskal-Wallis tests. Results: Results indicated that left ventricular diastolic and systolic function declined at a younger age in males than in females. Although differences in right ventricular diastolic function were not identified among age groups, right ventricular systolic function was lower in adult chimpanzees (> 12 years old), compared with subadult (8 to 12 years old) and juvenile (5 to 7 years old) chimpanzees. In addition, male subadult and adult chimpanzees had larger cardiac wall dimensions and chamber volumes than did their female counterparts. Conclusions and Clinical Relevance: Results of the present study provided useful reference intervals for cardiac structure and function in captive chimpanzees categorized on the basis of age and sex; however, further research is warranted to examine isolated and combined impacts of blood pressure, age, body weight, and anaesthetic agents on cardiac structure and function in chimpanzees

    Induction of Broad CD4+ and CD8+ T-Cell Responses and Cross- Neutralizing Antibodies against Hepatitis C Virus by Vaccination with Th1-Adjuvanted Polypeptides Followed by Defective Alphaviral Particles Expressing Envelope Glycoproteins gpE1 and gpE2 and Nonstructural Proteins 3, 4, and 5▿ †

    No full text
    Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen
    corecore