44 research outputs found
Evolution of heterogeneous cellular automata in fluctuating environments
The importance of environmental fluctuations in the evolution of living organisms by natural selection has been widely noted by biologists and linked to many important characteristics of life such as modularity, plasticity, genotype size, mutation rate, learning, or epigenetic adaptations. In artificial-life simulations, however, environmental fluctuations are usually seen as a nuisance rather than an essential characteristic of evolution. HetCA is a heterogeneous cellular automata characterized by its ability to generate open-ended long-term evolution and ``evolutionary progress''. In this paper, we propose to measure the impact of different types of environmental fluctuations in HetCA. Our results indicate that environmental changes induce mechanisms analogous to epigenetic adaptation or multilevel selection. This is particularly prevalent in two of the tested fluctuation schemes, which involve a round-robin inhibition of certain cell types, where phenotypic selection seems to occur
Towards Growing Robots: A Piecewise Morphology-Controller Co-adaptation Strategy for Legged Locomotion
Control of robots has largely been based on the assumption of a fixed morphology. Accordingly, robot designs have been stationary in time, except for the case of modular robots. Any drastic change in morphology, hence, requires a remodelling of the controller. This work takes inspiration from developmental robotics to present a piecewise morphology-controller growth/adaptation strategy that facilitates fast and reliable control adaptation to growing robots. We demonstrate our methodology on a simple 3 degree of freedom walking robot with adjustable foot lengths and with varying inertial conditions. Our results show not only the effectiveness and reliability of the piecewise morphology controller co-adaptation (PMCCA) strategy, but also highlight the need for morphological adaptation as a robot design strategy
An integrated modelling framework from cells to organism based on a cohort of digital embryos
We conducted a quantitative comparison of developing sea urchin embryos based on the analysis of five digital specimens obtained by automatic processing of in toto 3D+ time image data. These measurements served the reconstruction of a prototypical cell lineage tree able to predict the spatiotemporal cellular organisation of a normal sea urchin blastula. The reconstruction was achieved by designing and tuning a multi-level probabilistic model that reproduced embryo-level dynamics from a small number of statistical parameters characterising cell proliferation, cell surface area and cell volume evolution along the cell lineage. Our resulting artificial prototype was embedded in 3D space by biomechanical agent-based modelling and simulation, which allowed a systematic exploration and optimisation of free parameters to fit the experimental data and test biological hypotheses. The spherical monolayered blastula and the spatial arrangement of its different cell types appeared tightly constrained by cell stiffness, cell-adhesion parameters and blastocoel turgor pressure
A Digital Framework to Build, Visualize and Analyze a Gene Expression Atlas with Cellular Resolution in Zebrafish Early Embryogenesis
A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in
time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor
fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we
designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human
supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic
variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to
construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6
developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei
and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive
visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including
user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose
computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale,
with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics
through developmental stages
Isolation-by-Distance and Outbreeding Depression Are Sufficient to Drive Parapatric Speciation in the Absence of Environmental Influences
A commonly held view in evolutionary biology is that speciation (the emergence of genetically distinct and reproductively incompatible subpopulations) is driven by external environmental constraints, such as localized barriers to dispersal or habitat-based variation in selection pressures. We have developed a spatially explicit model of a biological population to study the emergence of spatial and temporal patterns of genetic diversity in the absence of predetermined subpopulation boundaries. We propose a 2-D cellular automata model showing that an initially homogeneous population might spontaneously subdivide into reproductively incompatible species through sheer isolation-by-distance when the viability of offspring decreases as the genomes of parental gametes become increasingly different. This simple implementation of the Dobzhansky-Muller model provides the basis for assessing the process and completion of speciation, which is deemed to occur when there is complete postzygotic isolation between two subpopulations. The model shows an inherent tendency toward spatial self-organization, as has been the case with other spatially explicit models of evolution. A well-mixed version of the model exhibits a relatively stable and unimodal distribution of genetic differences as has been shown with previous models. A much more interesting pattern of temporal waves, however, emerges when the dispersal of individuals is limited to short distances. Each wave represents a subset of comparisons between members of emergent subpopulations diverging from one another, and a subset of these divergences proceeds to the point of speciation. The long-term persistence of diverging subpopulations is the essence of speciation in biological populations, so the rhythmic diversity waves that we have observed suggest an inherent disposition for a population experiencing isolation-by-distance to generate new species
From evolutionary computation to the evolution of things
Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems
A reafferent and feed-forward model of song syntax generation in the Bengalese finch
Adult Bengalese finches generate a variable song that obeys a distinct and individual syntax. The syntax is gradually lost over a period of days after deafening and is recovered when hearing is restored. We present a spiking neuronal network model of the song syntax generation and its loss, based on the assumption that the syntax is stored in reafferent connections from the auditory to the motor control area. Propagating synfire activity in the HVC codes for individual syllables of the song and priming signals from the auditory network reduce the competition between syllables to allow only those transitions that are permitted by the syntax. Both imprinting of song syntax within HVC and the interaction of the reafferent signal with an efference copy of the motor command are sufficient to explain the gradual loss of syntax in the absence of auditory feedback. The model also reproduces for the first time experimental findings on the influence of altered auditory feedback on the song syntax generation, and predicts song- and species-specific low frequency components in the LFP. This study illustrates how sequential compositionality following a defined syntax can be realized in networks of spiking neurons
Defining and simulating open-ended novelty: requirements, guidelines, and challenges
The open-endedness of a system is often defined as a continual production of novelty. Here we pin down this concept more fully by defining several types of novelty that a system may exhibit, classified as variation, innovation, and emergence. We then provide a meta-model for including levels of structure in a system’s model. From there, we define an architecture suitable for building simulations of open-ended novelty-generating systems and discuss how previously proposed systems fit into this framework. We discuss the design principles applicable to those systems and close with some challenges for the community