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Abstract. Control of robots has largely been based on the assumption
of a fixed morphology. Accordingly, robot designs have been stationary
in time, except for the case of modular robots. Any drastic change in
morphology, hence, requires a remodelling of the controller. This work
takes inspiration from developmental robotics to present a piecewise
morphology-controller growth/adaptation strategy that facilitates fast
and reliable control adaptation to growing robots. We demonstrate our
methodology on a simple 3 degree of freedom walking robot with ad-
justable foot lengths and with varying inertial conditions. Our results
show not only the effectiveness and reliability of the piecewise morphol-
ogy controller co-adaptation (PMCCA) strategy, but also highlight the
need for morphological adaptation as a robot design strategy.

Keywords: Morphological Adaptation · Growing Robots · Control Op-
timization.

1 INTRODUCTION

Adaptation in an embodied agent can be found along two time scales: evolution-
ary and developmental. Evolutionary adaptations occur along larger time-scales
at a slower rate. Over several generations, through a selection process, high func-
tioning morphologies (body) and control parameters are evolved. Developmental
adaptations are faster and occur within a generation [17,1]. They are more spe-
cialized to the working environment and are not transferable within generations
[5,3]. There are numerous technological and algorithmic difficulties involved with
the co-optimization of the body and control in evolved systems [11]. Likewise,
there are many technological challenges in creating morphologically developing
systems.

The body morphology has an important role in shaping the behavior of an
embodied system [14,18], the influence of which can even extend through gener-
ations [9]. The role of morphological development, on the other hand, is not well
understood [4]. Kreigman et. al. showed that artificial organisms which devel-
oped environment-mediated morphological growth exhibited better robustness
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Fig. 1. The morphology, control and behavior of a dynamical system are intercon-
nected. The PMCCA strategy undergoes piecewise morphological changes and hence
local control adaptations, leveraging information from its ascendants. A single step
morphological change, as shown above, would most likely require a complete recalibra-
tion of the control parameters.

to slight abberations [10]. Similarly, another study showed that incorporating
the evolution-of-development along with the evolution-of-body led to faster dis-
covery of desirable behavior and higher robustness [1], a conclusion backed even
by experimental studies [19].

One of the key differences between morphological changes induced by evolu-
tion and development is the continuity of the body plan over time. Evolved body
plans can be drastically different from their parents. Developed bodies, by virtue
of physical constraints, maintain continuity in their morphology space. This con-
straint causes smooth variations in the body dynamics which is expected to lead
to continuous changes in the behavioral dynamics (before the bifurcation point)
[7]. The control adaptation required to retain desired behavior, hence, can also
be expected to be continuous. This way the control adaptation problem can be
reduced to a simple local search problem for each piecewise change in morphol-
ogy (referred to jointly as the piecewise morphology controller co-adaptation
strategy).

This work, unlike other related works on design optimization of morphology
[16] and co-optimization of morphology and controller [15] for locomotion, is not
a global optimization strategy. The main objective is to obtain locally optimum
controllers or morphologies using data from the real-world quickly and with-
out failures (falling or self-collisions). Remarkably, as our results indicate, the
proposed strategy actually performs better than a global optimization strategy.

The relevance of this study is two-fold. First, this work presents an efficient
reliable controller-morphology co-adaptation strategy for robots that need to
undergo morphological changes (shown by the body transformation from A to
B in Figure 1) [8]. Such cases arise for modular robots, when considerable load
is added, or when new functional components are attached. Second and more
importantly, this work proposes morphological adaptation as a design strategy
for tuning robots to their working environment (In Figure 1, a higher perform-
ing body B can be obtained by searching through the intermediate morphologies
A1, A2... An). We use a simple 3 degree of freedom walking robot for our study.
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The morphological parameters we explore are the length of the robot feet and
the inertial parameters of the robot. The behavior in study is the locomotion
speed. Even with a simple robot design and a common robotic task, development
of dynamic controllers for the system is not straightforward. Using extensive
experimental tests we show that the proposed localized controller-morphology
co-adaptation strategy is highly desirable for adapting controllers for morpho-
logically adapting robots. Our results not only indicate fast control adaptation
with a low risk of failure and damage, but were also able to find better perform-
ing solutions than a global optimization algorithm like simulated annealing. A
PMCCA search around the morphological space also showed that superior mor-
phologies better suited for the task and environment can be easily found and
tuned.

2 EXPERIMENTAL SETUP

For this study we use a planar robot, comprising of four rigid medium density
fibreboard (MDF) links and three rotary joints. At each end of the four link
mechanism, a MDF foot of variable length f is perpendicularly joined (see Figure
2), which can be varied between 5cm and 25cm in 5cm intervals. For our study,
we consider the feet length to be our morphological parameter to be tuned. Since,
it required more complex mechanisms to adjust the feet length continuously, we
rely on a discretized version of the same. Rubber tape on the underside of the
feet controls the slip between the robot and the horizontal surface. Servo motors
actuate the joints between links, each with a range of 120◦. All are set at their
lower bound when the four links are parallel. They are signalled by an on-board
microcontroller, which is tethered to a constant voltage power supply and a PC
running MATLAB. Six 33g M10 bolts may optionally be arranged around the
leading leg to add mass to the robot, as in Figure 2. Hence, this robot can
be parameterized in two directions in the morphological space, although quite
discreetly.

The movement of the robot within the plane is monitored using a six camera
OptiTrack motion capture system. Four markers are attached at each of the
outermost joints, and the position of each cluster’s geometric centre is followed.
Of particular interest is the average velocity of the joints in the x direction
(Figure 2), used to prescribe the behavioral scores.

3 PROCEDURE

Like the morphological space, the action space of the robot has to be parameter-
ized to make the search problem tractable. Knowing that the behavior of concern
is arising from locomotion, we can constrain our control actions to periodic sig-
nals. Hence, the configuration space of all possible motions was parameterized
into ten dimensions by controlling each of the three servo motors with a sine
wave. Though the time period of the wave was consistent between the motors,
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Fig. 2. Experimental Setup: the four link tethered robot. Six masses may optionally
be added around the leading leg.

each of the other parameters - amplitude, phase, and mean - could be indepen-
dently varied, subject to physical limits. The control objective is then to find
the optimal set of control parameters that maximizes the desired behavior: lo-
comotion speed, in our case. More specifically, the optimization process aimed
to maximise the average velocity of the robot in the x direction over the final
three sine periods of a five period run. This was done in order to remove effects
of any transient dynamics and ensure that the locomotion was stable, at least
for a short duration.

3.1 Simulated Annealing

The initial controller for the ‘base’ morphology can be obtained by any global op-
timization algorithm. We use simulated annealing for this study. The adaptation
of the controller for subsequent local morphologies can then be performed again
by simulated annealing (naive approach) or by our proposed PMCCA search
algorithm that leverages the continuity in the action-morphology space.

Table 1. Simulated Annealing Parameters

No. of cycles 15 Starting Phases 0 rad

Iterations per cycle 15 Starting Means π/15 rad

Starting Temp. T0 1 σt 8T s

Ti+1/Ti 0.85 σM 2Tπ/3 rad

Starting Time Period 5 s σA 2Tπ/3 rad

Starting Amplitudes π/15 rad σP 4Tπ/3 rad

For comparison purposes, each of the five foot sizes independently underwent
a 225 iteration simulated annealing process, the parameters of which are given in
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Table 1. During every iteration, each new parameter was proposed by sampling
from a one dimensional Gaussian curve centred at the current parameter and
truncated at its physical limits. The time period was limited between 1 & 15
seconds. Standard deviation values σt (time period), σM (mean), σA (amplitude)
& σP (phase) depended on the current temperature, Ti, which was decreased by
15% at the end of each 15 step cycle. Any score, S, above the currently accepted

score was immediately accepted, otherwise acceptance had a probability of e
−1
TS .

After each iteration, the data was manually flagged with a descriptor of the
robot’s behaviour. This later allowed the determination of number/location of
catastrophic (C) failures (in which the robot fell over or collided with its own
body) and harmless (H) failures (in which the robot’s movement had no effect
on its position or caused it to move backwards) to be identified. Both scenarios
were assigned a minimum score of 0.01 cm/s.

3.2 Proposed Methodology: PMCCA Search from Peak

The proposed PMCCA search algorithm for morphologically adapting robots is
based on the use of priors from the previous morphology to greatly reduce the
search space region. First for the ‘base’ morphology (f = 15cm), the highest
three scores (henceforth referred to as Peaks A, B and C) from the simulated
annealing process were identified and a refining search was performed around
each. This search comprised of 30 additional iterations using parameters drawn
randomly from a space near the peak, each limited to one-fifth of its range during
the simulated annealing. Note that the time period was permitted to extend
below 1 second since the robot was deemed less likely to collide with itself; a
high speed collision could have easily broken joints or prompted a dangerous
current spike from the power supply. Note that reducing the search space to
one-fifth of a single parameter cumulatively amounts to a significant reduction
in the overall search volume. This PMCCA search (Algorithm 1) is then used
to adapt the controller to the robot’s changing morphology. After every search,
the new best scores and their control parameters are used as the next starting
point for the new morphology.

For example, after the refined search through the peaks A, B, and C of
the ‘base’ morphology (f = 15cm), the best parameters are selected and the
morphology is modified in a piecewise manner to a setting of f = 20cm or
f = 10cm. Before moving to the next morphology (f = 25cm or f = 5cm,
respectively), a refined search is performed around the current peaks and the
next best parameters identified. Next, f was set to 10cm, and the same co-
adaptation rule was applied for sequential addition of six 33g masses to the
leading leg. The analysis of the experimental results are presented next.
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while not final morphology do
Scurrent = 0;
repeat 30 times

propose parameters near the current set;
run 5 sine periods using proposed parameters;
if no failure then

calculate S from OptiTrack data;
if S > Scurrent then

Scurrent = S;
end

end

end
accept Scurrent parameters;
increment morphology;

end

Algorithm 1: PMCCA search algorithm, beginning from the base morphology

Fig. 3. PMCCA searches branching outwards from the 15cm base morphology. The
average velocities and gait pattern is shown here.

4 EXPERIMENTAL RESULTS

4.1 Morphological Adaptation by Varying Foot Length, f

Figure 3 shows the results of the 30-iteration PMCCA searches for each of the
three starting peaks. These are compared with the exhaustive simulated anneal-
ing results, displayed in blue beside each foot length. With the exception of
f = 5cm, we see that the the PMCCA method outperforms the global simulated
annealing process for all new morphologies. We believe this is because the high
performing behaviors lie on a very small region in the action space, which is
unlikely to be visited by global search algorithms in practical time-limits. Given
infinite searching time, both algorithms will have the same maximum peaks,
while PMCCA will have a better mean value as it searches locally near the
peaks. This hypothesis is valid in the coming sections.

Now, the 900-iteration process of independently optimizing all four new mor-
phologies has been replaced by a 450-iteration process - a reduction of 50%. The
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Fig. 4. Comparing a simulated annealing process starting from scratch on f = 25cm
morphology with a PMCCA search algorithm that propagates from f = 5cm morphol-
ogy to f = 25cm.

Table 2. Comparing the simulated annealing and the PMCCA method catastrophic
failure rates

(%) 5cm 10cm 15cm 20cm 25cm

Annealing Failures (C) 22.7 15.6 30.7 37.3 33.3

PMCCA Failures A (C) 0 6.7 0 3.3 70.0

PMCCA Failures B (C) 0 0 0 13.3 43.3

PMCCA Failures C (C) 0 0 3.3 13.3 20.0

process could be sped up by reducing the number of searches and stopping the
refined search once good control candidates have been found. Additionally, the
average catastrophic failure rate of the entire process falls from 27.9% to 17.9%,
even though it is skewed upwards by the comparatively high failure rate of
f = 25cm during the PMCCA search (see Table 2).

It is clear from Table 2 that transitioning downwards in foot size is signif-
icantly less risky. Of the 180 iterations doing so, only 2 failures occurred: a
failure rate of 1.1%. However, Figure 3 seems to suggest that this direction is
associated with a reduction in performance of the 5cm feet. Though the highest
f = 5cm score found during the PMCCA search is only 69.6% of the simulated
annealing maximum, the significant increase in safety may prove to justify this
in applications where failure of trials carries a high risk and is highly undesirable.

The PMCCA search algorithm is very powerful because of its efficiency. An
example is illustrated with scenario shown in Figure 4, where the method of
searching directly on a new morphology (f = 25cm) is compared with the
method of morphology-controller co-adaptation. The PMCCA search algorithm
starts with the f = 5cm morphology and iteratively proceeds to a f = 25cm
morphology. This search noticeably led to the development of a range of gaits
suited to each morphology, and had high scores averaging 292% that of the
simulated annealing maxima, compared to the 204% & 183% of peaks A & C
respectively. The PMCCA method not only found superior gaits quicker when
compared to the global simulated annealing case, but it also provides valuable
information about other morphologies along the ’way’. For instance, the best
score achieved among all the morphologies was found on the f = 20cm morphol-
ogy, through the PMCCA search. Surprisingly, the simulated annealing process
performed the worst on the f = 20cm morphology. The top scoring gaits emerg-
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ing from the simulated anneal were observed to be static, with the sine waves of
the two refined peaks having time periods greater than 6 seconds. In contrast,
the higher scoring f = 20cm gaits developed whilst incrementally extending the
robot’s morphology were observed to be dynamic, relying on the effect of gravity
and foot elasticity to achieve faster locomotion.

Fig. 5. Clustering of behavioral scores above 2cm/s compared to the complete search
space. Inset shows the shifting of the three peaks in a low dimensional action space
representation.

The reason PMCCA performed so well can be understood from Figure 5.
Parameters producing a score greater than 2cm/s are plotted in the reduced
dimensionality control space, in which the axes represent the first two princi-
pal components of the normalized 10 dimensional control space. A dashed line
marks the boundary of the valid configuration space in the reduced dimensions.
On the coarsest of scales, an improvement in search efficiency is quickly deduced
from the behavior distribution in the low dimensional representation of the con-
trol space. The highest scoring parameters cluster into a central region of the
searched area, rarely with a first principal component greater than 5 or a second
below -10. Upon further inspection this excluded region largely contains points
flagged as catastrophic failures or harmless failures. Efficiency may thus have
been improved by eliminating parameter ranges in the 10 dimensional configu-
ration space corresponding to this region of the graph before optimization began.
If thoroughness of the search were not a priority, only the densely populated re-
gion to the upper left of (1,-10) could be searched. How the peaks shifted with
piecewise morphological changes is also quite localized.
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The PMCCA search method being evaluated does not prioritise any direction
of search over the others, and is equally likely to search any of the physically
valid directions. However, it can be clearly observed that peaks have directional
correlation. This is most apparent around peak C, suggesting a consistency in
the direction of shift of a peak for a directional change in morphology. This
indicates that the PMCCA search method can be further extended to include
priors from preceding morphologies to also guide the search direction. Further
experimentation would be necessary to confirm this hypothesis.

Distinct clusters have emerged for each value of f in the two principal com-
ponent directions, confirming that optimum control parameters are dependent
on the body morphology of the robot. These clusters are often manifested in
the form of different gait types, as is seen in Figure 6. The top half shows four
patterns developed during the simulated annealing process. The first and third
were somewhat dynamic in nature, whereas the second and fourth were static.
Conversely, the final three rows of Figure 6 contain the gaits developed dur-
ing the search from peak B. Interestingly, novel gaits, highly dynamic in nature
emerged from the refined search even in the ‘base’ morphology.

Fig. 6. A range of gaits developed whilst f was varied, from both the annealing and
PMCCA searches

Gaits emerging from the PMCCA searches also developed with the morphol-
ogy: for example, Figure 6 sees a dynamic jumping gait become a slower, static,
gait in which the trailing foot is dragged along the surface. Very few variations
of gait pattern observed during the simulated annealing process did not sub-
sequently emerge during the PMCCA search, though some gaits - such as the
jumping displayed - only appeared during this search. This occurred most fre-
quently when f = 20cm, for which the simulated annealing had the least effect
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(Figure 3). However, f = 20cm produced the highest overall score during the
PMCCA search - 18.5 cm/s - by developing a jumping gait from the f = 15cm
feet. Whilst this morphology would rely on momentum of the fast-swinging links
to propel it into the air, the f = 20cm setup used the elasticity of the trailing
foot, which would noticeably bend with each step, to spring from the table. Even
when searching a small region around the peaks, such noticeably different gaits
emerge: if variations in the gait pattern were deemed important to the thorough-
ness of the search, extending the range and fineness of the refined search can be
done.

4.2 Morphological Adaptation by Varying Mass Parameters

Fig. 7. Results of PMCCA search with incrementally added mass. The simulated an-
nealing results are shown for the ‘base’ morphology only.

In practice, the foot length of a robot may stay consistent whilst another
change in morphology occurs. For example, the addition of an arm and manip-
ulator to the top of the robot would not change the size of the action space
searched in Figure 5, but would affect the dynamics of the robot. Such an effect
was simulated using the six 33g masses around the leading leg. The whole robot
weighs around 510 grams. The results of the incremental addition of masses are
presented in Table 3 & Figure 7. The blue simulated annealing bar corresponds
to the optimization process for the case f = 10cm. The simulated annealing

Table 3. Comparing the simulated annealing and the PMCCA performance for addi-
tional weight

Simulated Annealing PMCCA
(M0) (M0→M6)

No. Iterations 225 180

Failures (C) (%) 15.6 6.7

Failures (H) (%) 40.0 7.8
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process was not done for the added masses due to the higher risk of damage.
Figure 7 shows us that the end of the 180-iteration search using PMCCA had
produced a score not only higher than the f = 10cm peak at which it began, but
higher than any score seen without the added mass for any morphology, with
almost one third of the failure rate of the full f = 10cm optimization. Indeed,
the 3 & 4 mass searches were clearly benefiting from the added mass, using the
additional momentum to propel the leading foot forwards during stepping. This
contrasted with the behaviour when all six masses were initially added at once:
the sudden increase in weight tended to pin the leading leg to the surface, achiev-
ing very little locomotion. This shows that morphological growth can also be a
desirable adaptation strategy for improving performance of the robot, tuned to
the real-world conditions.

5 CONCLUSIONS

The results presented in Section 4 suggest that a naive global optimization, like
simulated annealing, of the entire control space is rarely the safest or most effi-
cient way for a controller to achieve high performing behavior when prior knowl-
edge can be extracted from ‘neighboring’ morphologies and their sub-optimal
controllers. Utilising the knowledge of a neighbouring peak along an axis of
shifting body morphology enables our proposed PMCCA search to quickly at-
tain, and often exceed the performance of the optimization in considerably fewer
iterations. High performing unique gaits were also observed using the PMCCA
search possibly because of its finer search process in the regions of high perfor-
mance. It must however be noted that the stability of the gaits were not analyzed
in this study but can also be easily be incorporated in the behavioral score.

This method of piecewise controller-morphology adaptation, in fact, paral-
lels the process of growth seen throughout in nature; developing the controller
starting from a stable morphology towards a higher performing but less stable
morphology [12]. The proposed methodology is not just limited to shape and
mass changes. Other morphological parameters like stiffness, damping and actu-
ator distribution can be be similarly investigated. With advances in soft robotics,
morphological adaptations are becoming more prevalent with tunable properties
[13,6,2] and hence new and elegant control adaptation algorithms are required.

Although we have restricted our piecewise morphology search to a single
dimension, with appropriate automated morphological adaptation mechanisms,
the process can be extended to a multidimensional search space. Another in-
teresting observation which was not investigated in this paper is the directional
dependencies found in the piecewise morphological changes. This indicates that
the control adaptation can be further polished from the current local search to
include directional information. The definition and parameterization of the robot
behavior is another aspect to be addressed if the method is to be extended to
other applications. To extend this procedure to other tasks such as manipulation,
appropriate behavioral scores have to be defined and estimated.
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