53 research outputs found

    Cell death and transcriptional responses induced in larvae of the nematode Haemonchus contortus by toxins/toxicants with broad phylogenetic efficacy

    Get PDF
    Establishing methods to investigate treatments that induce cell death in parasitic nematodes will promote experimental approaches to elucidate mechanisms and to identify prospective anthelmintics capable of inducing this outcome. Here, we extended recent progress on a method to monitor cell death and to identify small molecule inhibitors i

    Expressed sequence tags from life cycle stages of Trichinella spiralis: Application to biology and parasite control

    Get PDF
    While the approach taken to date to study Trichinella spp., involves mainly characterization of individual genes of interest, we initiated a genomics approach as an antecedent to more complete genome sequencing. Our approach involves use of expressed sequence tags (ESTs) obtained from three life cycle stages of Trichinella spiralis; adult worms (AD), mature muscle larvae (ML) and immature L1 larvae (immL1, also known as newborn larvae) (Mitreva et al., 2004a) to improve the technical capacity for research on Trichinella spp. and to generate information that will aid prospective development of relevant hypotheses. In this review, we will summarize findings of our EST analysis and discuss how they relate to topics mentioned above. The foundation laid by this data will also contribute toward development of a more substantial genomic database and technical capacity to dissect molecular interactions between vertebrate hosts and Trichinella spp

    Parasitic nematodes—From genomes to control

    Get PDF
    The diseases caused by parasitic nematodes in domestic and companion animals are major factors that decrease production and quality of the agricultural products. Methods available for the control of the parasitic nematode infections are mainly based on chemical treatment, non-chemical management practices, immune modulation and biological control. However, even with integrated pest management that frequently combines these approaches, the effective and long-lasting control strategies are hampered by the persistent exposure of host animals to environmental stages of parasites, the incomplete protective response of the host and acquisition of anthelmintic resistance by an increasing number of parasitic nematodes. Therefore, the challenges to improve control of parasitic nematode infections are multi-fold and no single category of information will meet them all. However, new information, such as nematode genomics, functional genomics and proteomics, can strengthen basic and applied biological research aimed to develop improvements. In this review we will, summarize existing control strategies of nematode infections and discuss ongoing developments in nematode genomics. Genomics approaches offer a growing and fundamental base of information, which when coupled with downstream functional genomics and proteomics can accelerate progress towards developing more efficient and sustainable control programs

    TNFα and GM-CSF-induced activation of the CAEV promoter is independent of AP-1

    Get PDF
    AbstractCaprine arthritis encephalitis virus transcription is under the control of the viral promoter within the long terminal repeat. Previous studies with the closely related maedi visna lentivirus have indicated that viral transcription is dependent upon the AP-1 transcription factor. Other studies have indicated a potential role for the cytokines TNFα and GM-CSF in CAEV pathogenesis by increasing viral loads in infected tissues. The hypotheses that AP-1 transcription factors are necessary for transcriptional activation of the CAEV promoter and that CAEV transcriptional activation results from treatment with the cytokines GM-CSF and TNFα were tested with a stably transduced U937 cell line. Here, we found that TNFα and GM-CSF activated CAEV transcription in U937 cells. However, this activation effect was not blocked by SP600125, an inhibitor of Jun N-terminal kinase. SP600125 effectively prevented Jun phosphorylation in cells subsequently treated with cytokines. The cytokines TNFα and GM-CSF therefore activate CAEV transcription, and this effect occurs independently of AP-1. A set of progressive deletion mutants was utilized to show that TNFα-induced expression depends on an element or elements within the U3 70-bp repeat

    Peptidases compartmentalized to the Ascaris suum intestinal lumen and apical intestinal membrane

    Get PDF
    The nematode intestine is a tissue of interest for developing new methods of therapy and control of parasitic nematodes. However, biological details of intestinal cell functions remain obscure, as do the proteins and molecular functions located on the apical intestinal membrane (AIM), and within the intestinal lumen (IL) of nematodes. Accordingly, methods were developed to gain a comprehensive identification of peptidases that function in the intestinal tract of adult female Ascaris suum. Peptidase activity was detected in multiple fractions of the A. suum intestine under pH conditions ranging from 5.0 to 8.0. Peptidase class inhibitors were used to characterize these activities. The fractions included whole lysates, membrane enriched fractions, and physiological- and 4 molar urea-perfusates of the intestinal lumen. Concanavalin A (ConA) was confirmed to bind to the AIM, and intestinal proteins affinity isolated on ConA-beads were compared to proteins from membrane and perfusate fractions by mass spectrometry. Twenty-nine predicted peptidases were identified including aspartic, cysteine, and serine peptidases, and an unexpectedly high number (16) of metallopeptidases. Many of these proteins co-localized to multiple fractions, providing independent support for localization to specific intestinal compartments, including the IL and AIM. This unique perfusion model produced the most comprehensive view of likely digestive peptidases that function in these intestinal compartments of A. suum, or any nematode. This model offers a means to directly determine functions of these proteins in the A. suum intestine and, more generally, deduce the wide array functions that exist in these cellular compartments of the nematode intestine

    The draft genome of the parasitic nematode Trichinella spiralis

    Get PDF
    Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-Mb nuclear genome,which is estimated to contain 15,808 protein-coding genes,at ~35-fold coverage using whole-genome shotgun and hierarchal map–assisted sequencing. Comparative genome analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic compared to a non-parasitic nematode and a preponderance of gene-loss and -gain events in nematodes relative to Drosophila melanogaster. This genome sequence and the identified pan-phylum characteristics will contribute to genome evolution studies of Nematoda as well as strategies to combat global parasites of humans, food animals and crops

    Parasitic nematodes—From genomes to control

    Get PDF
    The diseases caused by parasitic nematodes in domestic and companion animals are major factors that decrease production and quality of the agricultural products. Methods available for the control of the parasitic nematode infections are mainly based on chemical treatment, non-chemical management practices, immune modulation and biological control. However, even with integrated pest management that frequently combines these approaches, the effective and long-lasting control strategies are hampered by the persistent exposure of host animals to environmental stages of parasites, the incomplete protective response of the host and acquisition of anthelmintic resistance by an increasing number of parasitic nematodes. Therefore, the challenges to improve control of parasitic nematode infections are multi-fold and no single category of information will meet them all. However, new information, such as nematode genomics, functional genomics and proteomics, can strengthen basic and applied biological research aimed to develop improvements. In this review we will, summarize existing control strategies of nematode infections and discuss ongoing developments in nematode genomics. Genomics approaches offer a growing and fundamental base of information, which when coupled with downstream functional genomics and proteomics can accelerate progress towards developing more efficient and sustainable control programs

    Trichinella spiralis: Genomic Application to Control a Zoonotic Nematode

    No full text
    The nematode Trichinella spiralis and related species are zoonotic food-borne pathogens of humans. The muscle larval stage of this parasite establishes a chronic infection in skeletal muscle cells of humans who acquire trichinellosis. Muscle larvae also reside in skeletal muscles of animals, swine in particular, and other food animals, including game animals. These muscle larvae are the source of zoonotic transmission to humans. Once established, muscle larvae become less susceptible to anthelmintics that are effective against other stages of the parasite. Very little information exists to guide discovery of new drug targets and improved methods of eliminating muscle larvae established in muscle cells of humans or food animals. Here we discuss progress that has been made on sequencing the genome of T. spiralis. This informational resource should prove valuable for dissecting molecular characteristics of this parasite that warrant investigation as targets for chemotherapy. The availability of the T. spiralis genome has made possible the comparison of genomes from nematodes that span the evolutionary extremes of the phylum Nematoda. We describe a pan-phylum comparison of genomes that is underway. This comparative genomics approach is expected to identify molecular characteristics that are conserved among all nematodes, and hence applicable to nematode pathogens throughout the phylum, including species from the genus Trichinella. T. spiralis expression data for muscle larvae has been integrated with genome sequences to identify specific genes and proteins with relevance to control of this stage of the parasite. Examples are discussed in which genomic information may advance understanding of T. spiralis biology and new methods for treating infections by this parasite
    corecore