238 research outputs found

    Spontaneous calcification process in primary renal cells from a medullary sponge kidney patient harbouring a GDNF mutation.

    Get PDF
    Medullary nephrocalcinosis is a hallmark of medullary sponge kidney (MSK). We had the opportunity to study a spontaneous calcification process in vitro by utilizing the renal cells of a patient with MSK who was heterozygous for the c.-27 + 18G>A variant in the GDNF gene encoding glial cell-derived neurotrophic factor. The cells were obtained by collagenase digestion of papillary tissues from the MSK patient and from two patients who had no MSK or nephrocalcinosis. These cells were typed by immunocytochemistry, and the presence of mineral deposits was studied using von Kossa staining, scanning electron microscopy analysis and an ALP assay. Osteoblastic lineage markers were studied using immunocytochemistry and RT-PCR. Staminality markers were also analysed using flow cytometry, magnetic cell separation technology, immunocytochemistry and RT-PCR. Starting from p2, MSK and control cells formed nodules with a behaviour similar to that of calcifying pericytes; however, Ca2PO4 was only found in the MSK cultures. The MSK cells had morphologies and immunophenotypes resembling those of pericytes or stromal stem cells and were positive for vimentin, ZO1, aSMA and CD146. In addition, the MSK cells expressed osteocalcin and osteonectin, indicating an osteoblast-like phenotype. In contrast to the control cells, GDNF was down-regulated in the MSK cells. Stable GDNF knockdown was established in the HK2 cell line and was found to promote Ca2PO4 deposition when the cells were incubated with calcifying medium by regulating the osteonectin/osteopontin ratio in favour of osteonectin. Our data indicate that the human papilla may be a perivascular niche in which pericyte/stromal-like cells can undergo osteogenic differentiation under particular conditions and suggest that GDNF down-regulation may have influenced the observed phenomenon

    Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples.

    Get PDF
    Abstract: Corynebacterium pseudotuberculosis is the aetiological agent of caseous lymphadenitis (CLA), a debilitating disease of sheep and goats. Accurate diagnosis of CLA primarily relies on microbiological examination, followed by biochemical identification of isolates. In an effort to facilitate C. pseudotuberculosis detection, a multiplex PCR (mPCR) assay was developed targeting three genes of this bacterium: the 16S rRNA gene, rpoB and pld. This method allowed efficient identification of 40 isolates of this bacterium that had been identified previously by biochemical testing. Analysis of taxonomically related species did not generate the C. pseudotuberculosis mPCR amplification profile, thereby demonstrating the assay's specificity. As little as 1 pg of C. pseudotuberculosis genomic DNA was detected by this mPCR assay, demonstrating the sensitivity of the method. The detection limit in clinical samples was estimated to be 103 c.f.u. C. pseudotuberculosis could be detected directly in pus samples from infected sheep and goats (n=56) with a high diagnostic sensitivity (94.6 %). The developed assay significantly improves rapid C. pseudotuberculosis detection and could supersede bacteriological culture for microbiological and epidemiological diagnosis of CLA

    The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

    Get PDF
    Trost E, Ott L, Schneider J, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11(1): 728

    Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

    Get PDF
    Ruiz JC, D'Afonseca V, Silva A, et al. Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains. PLoS ONE. 2011;6(4): e18551.Background: Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829

    PIPS: Pathogenicity Island Prediction Software

    Get PDF
    The adaptability of pathogenic bacteria to hosts is influenced by the genomic plasticity of the bacteria, which can be increased by such mechanisms as horizontal gene transfer. Pathogenicity islands play a major role in this type of gene transfer because they are large, horizontally acquired regions that harbor clusters of virulence genes that mediate the adhesion, colonization, invasion, immune system evasion, and toxigenic properties of the acceptor organism. Currently, pathogenicity islands are mainly identified in silico based on various characteristic features: (1) deviations in codon usage, G+C content or dinucleotide frequency and (2) insertion sequences and/or tRNA genetic flanking regions together with transposase coding genes. Several computational techniques for identifying pathogenicity islands exist. However, most of these techniques are only directed at the detection of horizontally transferred genes and/or the absence of certain genomic regions of the pathogenic bacterium in closely related non-pathogenic species. Here, we present a novel software suite designed for the prediction of pathogenicity islands (pathogenicity island prediction software, or PIPS). In contrast to other existing tools, our approach is capable of utilizing multiple features for pathogenicity island detection in an integrative manner. We show that PIPS provides better accuracy than other available software packages. As an example, we used PIPS to study the veterinary pathogen Corynebacterium pseudotuberculosis, in which we identified seven putative pathogenicity islands

    Outcomes of pregnancies after kidney transplantation: lessons learned from CKD. A comparison of transplanted, nontransplanted chronic kidney disease patients and low-risk pregnancies: a multicenter nationwide analysis.

    Get PDF
    BACKGROUND: Kidney transplantation (KT) may restore fertility in CKD. The reasons why materno-foetal outcomes are still inferior to the overall population are only partially known. Comparison with the CKD population may offer some useful insights for management and counselling.Aim of this study was to analyse the outcomes of pregnancy after KT, compared with a large population of non-transplanted CKD patients and with low-risk control pregnancies, observed in Italy the new millennium. METHODS: We selected 121 live-born singletons after KT (Italian study group of kidney in pregnancy, national coverage about 75%), 610 live-born singletons in CKD and 1418 low-risk controls recruited in 2 large Italian Units, in the same period (2000-2014). The following outcomes were considered: maternal and foetal death; malformations; preterm delivery; small for gestational age baby (SGA); need for the neonatal intensive care unit (NICU); doubling of serum creatinine or increase in CKD stage. Data were analysed according to kidney diseases, renal function (staging according to CKD-EPI), hypertension, maternal age, partity, ethnicity. RESULTS: Materno-foetal outcomes are less favourable in CKD and KT as compared with the low-risk population. CKD stage and hypertension are important determinants of results. KT patients with e-GFR >90 have worse outcomes compared with CKD stage 1 patients; the differences level off when only CKD patients affected by glomerulonephritis or systemic diseases ('progressive CKD') are compared with KT. In the multivariate analysis, risk for preterm and early-preterm delivery was linked to CKD stage (2-5 versus 1: RR 3.42 and 3.78) and hypertension (RR 3.68 and 3.16) while no difference was associated with being a KT or a CKD patient. CONCLUSIONS: The materno-foetal outcomes in patients with kidney transplantation are comparable with those of nontransplanted CKD patients with similar levels of kidney function impairment and progressive and/or immunologic kidney diseas

    Management of a caseous lymphadenitis outbreak in a new Iberian ibex (Capra pyrenaica) stock reservoir

    Get PDF
    Background: In 2010, an Iberian ibex (Capra pyrenaica hispanica) stock reservoir was established for conservation purposes in north-eastern Spain. Eighteen ibexes were captured in the wild and housed in a 17 hectare enclosure. Once in captivity, a caseous lymphadenitis (CLA) outbreak occurred and ibex handlings were carried out at six-month intervals between 2010 and 2013 to perform health examinations and sampling. Treatment with a bacterin-based autovaccine and penicillin G benzatine was added during the third and subsequent handlings, when infection by Corynebacterium pseudotuberculosis was confirmed. Changes in lesion score, serum anti-C. pseudotuberculosis antibodies and haematological parameters were analyzed to assess captivity effects, disease emergence and treatment efficacy. Serum acute phase proteins (APP) Haptoglobin (Hp), Amyloid A (SAA) and Acid Soluble Glycoprotein (ASG) concentrations were also determined to evaluate their usefulness as indicators of clinical status.Once in captivity, 12 out of 14 ibexes (85.7%) seroconverted, preceding the emergence of clinical signs; moreover, TP, WBC, eosinophil and platelet cell counts increased while monocyte and basophil cell counts decreased. After treatment, casualties and fistulas disappeared and both packed cell volume (PCV) and haemoglobin concentration significantly increased. Hp, SAA and ASG values were under the limit of detection or showed no significant differences. Conclusions: A role for captivity in contagion rate is suggested by the increase in antibody levels against C. pseudotuberculosis and the emergence of clinical signs. Although boosted by captivity, this is the first report of an outbreak of caseous lymphadenitis displaying high morbidity and mortality in wild ungulates. Treatment consisting of both vaccination and antibiotic therapy seemed to prevent mortality and alleviate disease severity, but was not reflected in the humoural response. Haematology and APP were not useful indicators in our study, perhaps due to the sampling frequency. Presumably endemic and irrelevant in the wild, this common disease of domestic small ruminants is complicating conservation efforts for the Iberian ibex in north-eastern Spain
    corecore