402 research outputs found

    A Carbon Nanofilament-Bead Necklace

    Get PDF
    Carbon nanofilaments with carbon beads grown on their surfaces were successfully synthesized reproducibly by a floating catalyst CVD method. The nanofilaments hosting the pearl-like structures typically show an average diameter of about 60 nm, which mostly consists of low-ordered graphite layers. The beads with diameter range 150−450 nm are composed of hundreds of crumpled and random graphite layers. The mechanism for the formation of these beaded nanofilaments is ascribed to two nucleation processes of the pyrolytic carbon deposition, arising from a temperature gradient between different parts of the reaction chamber. Furthermore, the Raman scattering properties of the beaded nanofilaments have been measured, as well as their confocal Raman G-line images. The Raman spectra reveal that that the trunks of the nanofilaments have better graphitic properties than the beads, which is consistent with the HRTEM analysis. The beaded nanofilaments are expected to have high potential applications in composites, which should exhibit both particle- and fiber-reinforcing functions for the host matrixes

    Electrochemical Boron-Doped Diamond Film Microcells Micromachined with Femtosecond Laser: Application to the Determination of Water Framework Directive Metals

    No full text
    Planar electrochemical microcells were micromachined in a microcrystalline boron-doped diamond (BDD) thin layer using a femtosecond laser (Photo 1). The electrochemical performances of the new laser-machined BDD microcell were assessed by differential pulse anodic stripping voltammetry (DPASV) determinations, at nM level, of the four heavy metal ions of the European Water Framework Directive (WFD): Cd(II), Ni(II), Pb(II), Hg(II). The results are compared with those of previously published BDD electrodes [1]. The calculated detection limits are 0.4 nM, 6.8 nM and 5.5 nm 2.3 nM, and the linearities go up to 35nM, 97nM, 48nM and 5nM for respectively Cd(II), Ni(II) Pb(II) and Hg(II). The detection limits meet with the environmental quality standard of the WFD for three of the four metals. It was shown that the four heavy metals could be detected simultaneously, in the concentration ratio usually measured in sewage or runoff waters

    Router-level community structure of the Internet Autonomous Systems

    Get PDF
    The Internet is composed of routing devices connected between them and organized into independent administrative entities: the Autonomous Systems. The existence of different types of Autonomous Systems (like large connectivity providers, Internet Service Providers or universities) together with geographical and economical constraints, turns the Internet into a complex modular and hierarchical network. This organization is reflected in many properties of the Internet topology, like its high degree of clustering and its robustness. In this work, we study the modular structure of the Internet router-level graph in order to assess to what extent the Autonomous Systems satisfy some of the known notions of community structure. We show that the modular structure of the Internet is much richer than what can be captured by the current community detection methods, which are severely affected by resolution limits and by the heterogeneity of the Autonomous Systems. Here we overcome this issue by using a multiresolution detection algorithm combined with a small sample of nodes. We also discuss recent work on community structure in the light of our results

    Synthesis of diamondlike carbon films with superlow friction and wear properties

    Full text link
    In this study, the authors introduce a new diamondlike carbon (DLC) film providing a friction coefficient of 0.001 and wear rates of 10{sup {minus}9} to 10{sup {minus}10} mm{sup 3}/N.m in inert-gas environments (e.g., dry nitrogen and argon). The film was grown on steel and sapphire substrates in a plasma enhanced chemical vapor deposition system that uses using a hydrogen-rich plasma. Employing a combination of surface and structure analytical techniques, they explored the structural chemistry of the resultant DLC films and correlated these findings with the friction and wear mechanisms of the films. The results of tribological tests under a 10-N load (creating initial peak Hertz pressures of 1 and 2.2 GPa on steel and sapphire test pairs, respectively) and at 0.2 to 0.5 m/s sliding velocities indicated that a close correlation exists between the friction and wear coefficients of DLC films and the source gas chemistry. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios had the lowest fiction coefficients and the highest wear resistance. The lowest friction coefficient (0.001) was achieved with a film on sapphire substrates produced in a gas discharge plasma consisting of 25% methane and 75% hydrogen

    Alcohol-related brain damage in humans

    Get PDF
    Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics

    Emission time scale of light particles in the system Xe+Sn at 50 AMeV. A probe for dynamical emission ?

    Full text link
    Proton and deuteron correlation functions have been investigated with both impact parameter and emission source selections. The correlations of the system (129Xe + natSn) at 50 AMeV have been measured with the 4 pi INDRA which provides a complete kinematical description of each event. The emission time scale analyzed with a quantum model reveals the time sequence of the light particles emitted by the projectile-like fragment. The short and constant emission time of the proton, independent of the impact parameter, can be attributed to a preequilibrium process.Comment: 20 pages, with 11 included figures; Accepted by European Physics Journal

    A review of friction models in interacting joints for durability design.

    Get PDF
    This paper presents a comprehensive review of friction modelling to provide an understanding of design for durability within interacting systems. Friction is a complex phenomenon and occurs at the interface of two components in relative motion. Over the last several decades, the effects of friction and its modelling techniques have been of significant interests in terms of industrial applications. There is however a need to develop a unified mathematical model for friction to inform design for durability within the context of varying operational conditions. Classical dynamic mechanisms model for the design of control systems has not incorporated friction phenomena due to non-linearity behaviour. Therefore, the tribological performance concurrently with the joint dynamics of a manipulator joint applied in hazardous environments needs to be fully analysed. Previously the dynamics and impact models used in mechanical joints with clearance have also been examined. The inclusion of reliability and durability during the design phase is very important for manipulators which are deployed in harsh environmental and operational conditions. The revolute joint is susceptible to failures such as in heavy manipulators these revolute joints can be represented by lubricated conformal sliding surfaces. The presence of pollutants such as debris and corrosive constituents has the potential to alter the contacting surfaces, would in turn affect the performance of revolute joints, and puts both reliability and durability of the systems at greater risks of failure. Key literature is identified and a review on the latest developments of the science of friction modelling is presented here. This review is based on a large volume of knowledge. Gaps in the relevant field have been identified to capitalise on for future developments. Therefore, this review will bring significant benefits to researchers, academics and industrial professionals
    corecore