135 research outputs found

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    © 2018 The Author(s). Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers

    HCV genome-wide genetic analyses in context of disease progression and hepatocellular carcinoma

    Get PDF
    <div><p>Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV’s sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.</p></div

    ConDeTri - A Content Dependent Read Trimmer for Illumina Data

    Get PDF
    During the last few years, DNA and RNA sequencing have started to play an increasingly important role in biological and medical applications, especially due to the greater amount of sequencing data yielded from the new sequencing machines and the enormous decrease in sequencing costs. Particularly, Illumina/Solexa sequencing has had an increasing impact on gathering data from model and non-model organisms. However, accurate and easy to use tools for quality filtering have not yet been established. We present ConDeTri, a method for content dependent read trimming for next generation sequencing data using quality scores of each individual base. The main focus of the method is to remove sequencing errors from reads so that sequencing reads can be standardized. Another aspect of the method is to incorporate read trimming in next-generation sequencing data processing and analysis pipelines. It can process single-end and paired-end sequence data of arbitrary length and it is independent from sequencing coverage and user interaction. ConDeTri is able to trim and remove reads with low quality scores to save computational time and memory usage during de novo assemblies. Low coverage or large genome sequencing projects will especially gain from trimming reads. The method can easily be incorporated into preprocessing and analysis pipelines for Illumina data

    Disparities and risks of sexually transmissible infections among men who have sex with men in China: a meta-analysis and data synthesis.

    Get PDF
    BACKGROUND: Sexually transmitted infections (STIs), including Hepatitis B and C virus, are emerging public health risks in China, especially among men who have sex with men (MSM). This study aims to assess the magnitude and risks of STIs among Chinese MSM. METHODS: Chinese and English peer-reviewed articles were searched in five electronic databases from January 2000 to February 2013. Pooled prevalence estimates for each STI infection were calculated using meta-analysis. Infection risks of STIs in MSM, HIV-positive MSM and male sex workers (MSW) were obtained. This review followed the PRISMA guidelines and was registered in PROSPERO. RESULTS: Eighty-eight articles (11 in English and 77 in Chinese) investigating 35,203 MSM in 28 provinces were included in this review. The prevalence levels of STIs among MSM were 6.3% (95% CI: 3.5-11.0%) for chlamydia, 1.5% (0.7-2.9%) for genital wart, 1.9% (1.3-2.7%) for gonorrhoea, 8.9% (7.8-10.2%) for hepatitis B (HBV), 1.2% (1.0-1.6%) for hepatitis C (HCV), 66.3% (57.4-74.1%) for human papillomavirus (HPV), 10.6% (6.2-17.6%) for herpes simplex virus (HSV-2) and 4.3% (3.2-5.8%) for Ureaplasma urealyticum. HIV-positive MSM have consistently higher odds of all these infections than the broader MSM population. As a subgroup of MSM, MSW were 2.5 (1.4-4.7), 5.7 (2.7-12.3), and 2.2 (1.4-3.7) times more likely to be infected with chlamydia, gonorrhoea and HCV than the broader MSM population, respectively. CONCLUSION: Prevalence levels of STIs among MSW were significantly higher than the broader MSM population. Co-infection of HIV and STIs were prevalent among Chinese MSM. Integration of HIV and STIs healthcare and surveillance systems is essential in providing effective HIV/STIs preventive measures and treatments. TRIAL REGISTRATION: PROSPERO NO: CRD42013003721

    Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis.

    Get PDF
    Psoriatic arthritis (PsA) is a debilitating immune-mediated inflammatory arthritis of unknown pathogenesis commonly affecting patients with skin psoriasis. Here we use complementary single-cell approaches to study leukocytes from PsA joints. Mass cytometry demonstrates a 3-fold expansion of memory CD8 T cells in the joints of PsA patients compared to peripheral blood. Meanwhile, droplet-based and plate-based single-cell RNA sequencing of paired T cell receptor alpha and beta chain sequences show pronounced CD8 T cell clonal expansions within the joints. Transcriptome analyses find these expanded synovial CD8 T cells to express cycling, activation, tissue-homing and tissue residency markers. T cell receptor sequence comparison between patients identifies clonal convergence. Finally, chemokine receptor CXCR3 is upregulated in the expanded synovial CD8 T cells, while two CXCR3 ligands, CXCL9 and CXCL10, are elevated in PsA synovial fluid. Our data thus provide a quantitative molecular insight into the cellular immune landscape of psoriatic arthritis

    A trimeric DNA polymerase complex increases the native replication processivity

    Get PDF
    DNA polymerases are essential enzymes in all domains of life for both DNA replication and repair. The primary DNA replication polymerase from Sulfolobus solfataricus (SsoDpo1) has been shown previously to provide the necessary polymerization speed and exonuclease activity to replicate the genome accurately. We find that this polymerase is able to physically associate with itself to form a trimer and that this complex is stabilized in the presence of DNA. Analytical gel filtration and electrophoretic mobility shift assays establish that initially a single DNA polymerase binds to DNA followed by the cooperative binding of two additional molecules of the polymerase at higher concentrations of the enzyme. Protein chemical crosslinking experiments show that these are specific polymerase–polymerase interactions and not just separate binding events along DNA. Isothermal titration calorimetry and fluorescence anisotropy experiments corroborate these findings and show a stoichiometry where three polymerases are bound to a single DNA substrate. The trimeric polymerase complex significantly increases both the DNA synthesis rate and the processivity of SsoDpo1. Taken together, these results suggest the presence of a trimeric DNA polymerase complex that is able to synthesize long DNA strands more efficiently than the monomeric form

    EFS shows biallelic methylation in uveal melanoma with poor prognosis as well as tissue-specific methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uveal melanoma (UM) is a rare eye tumor. There are two classes of UM, which can be discriminated by the chromosome 3 status or global mRNA expression profile. Metastatic progression is predominantly originated from class II tumors or from tumors showing loss of an entire chromosome 3 (monosomy 3). We performed detailed <it>EFS </it>(<it>embryonal Fyn-associated substrate</it>) methylation analyses in UM, cultured uveal melanocytes and normal tissues, to explore the role of the differentially methylated <it>EFS </it>promoter region CpG island in tumor classification and metastatic progression.</p> <p>Methods</p> <p><it>EFS </it>methylation was determined by direct sequencing of PCR products from bisulfite-treated DNA or by sequence analysis of individual cloned PCR products. The results were associated with clinical features of tumors and tumor-related death of patients.</p> <p>Results</p> <p>Analysis of 16 UM showed full methylation of the <it>EFS </it>CpG island in 8 (50%), no methylation in 5 (31%) and partial methylation in 3 (19%) tumors. Kaplan-Meier analysis revealed a higher risk of metastatic progression for tumors with <it>EFS </it>methylation (p = 0.02). This correlation was confirmed in an independent set of 24 randomly chosen tumors. Notably, only UM with <it>EFS </it>methylation gave rise to metastases. Real-time quantitative RT-PCR expression analysis revealed a significant inverse correlation of <it>EFS </it>mRNA expression with <it>EFS </it>methylation in UM. We further found that <it>EFS </it>methylation is tissue-specific with full methylation in peripheral blood cells, and no methylation in sperm, cultured primary fibroblasts and fetal muscle, kidney and brain. Adult brain samples, cultured melanocytes from the uveal tract, fetal liver and 3 of 4 buccal swab samples showed partial methylation. <it>EFS </it>methylation always affects both alleles in normal and tumor samples.</p> <p>Conclusions</p> <p>Biallelic <it>EFS </it>methylation is likely to be the result of a site-directed methylation mechanism. Based on partial methylation as observed in cultured melanocytes we hypothesize that there might be methylated and unmethylated precursor cells located in the uveal tract. The <it>EFS </it>methylation of a UM may depend on which type of precursor cell the tumor originated from.</p

    Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase

    Get PDF
    [EN] During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (~50 pN).We thank Stephan Grill laboratory (MPI-CBG, Dresden) for help with data collection and E. Galburt, M. Manosas and M. De Vega for critical reading of the manuscript. Spanish Ministry of Economy and Competitiveness [BFU2011-29038 to J.L.C., BFU2013-44202 to J.M.V., BFU2011-23645 to M.S., FIS2010-17440, GR35/10-A920GR35/10-A-911 to F.J.C., MAT2013-49455-EXP to J.R.A.-G. and BFU2012-31825 to B.I.]; Regional Government of Madrid [S2009/MAT 1507 to J.L.C. and CDS2007-0015 to M.S.]; European Molecular Biology Organization [ASTF 276-2012 to J.M.L.]. Funding for open access charge: Spanish Ministry of Economy and Competitiveness [BFU2012-31825 to B.I.].Morin, J.; Cao, F.; Lázaro, J.; Arias-Gonzalez, JR.; Valpuesta, J.; Carrascosa, J.; Salas, M.... (2015). Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Research. 43(7):3643-3652. https://doi.org/10.1093/nar/gkv204S36433652437Steitz, T. A., & Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences, 90(14), 6498-6502. doi:10.1073/pnas.90.14.6498Nakamura, T., Zhao, Y., Yamagata, Y., Hua, Y., & Yang, W. (2012). Watching DNA polymerase η make a phosphodiester bond. Nature, 487(7406), 196-201. doi:10.1038/nature11181Kohlstaedt, L., Wang, J., Friedman, J., Rice, P., & Steitz, T. (1992). Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 256(5065), 1783-1790. doi:10.1126/science.1377403Steitz, T. A. (2006). Visualizing polynucleotide polymerase machines at work. The EMBO Journal, 25(15), 3458-3468. doi:10.1038/sj.emboj.7601211Zhang, H., Cao, W., Zakharova, E., Konigsberg, W., & De La Cruz, E. M. (2007). Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Nucleic Acids Research, 35(18), 6052-6062. doi:10.1093/nar/gkm587Wang, W., Wu, E. Y., Hellinga, H. W., & Beese, L. S. (2012). Structural Factors That Determine Selectivity of a High Fidelity DNA Polymerase for Deoxy-, Dideoxy-, and Ribonucleotides. Journal of Biological Chemistry, 287(34), 28215-28226. doi:10.1074/jbc.m112.366609Berezhna, S. Y., Gill, J. P., Lamichhane, R., & Millar, D. P. (2012). Single-Molecule Förster Resonance Energy Transfer Reveals an Innate Fidelity Checkpoint in DNA Polymerase I. Journal of the American Chemical Society, 134(27), 11261-11268. doi:10.1021/ja3038273Hariharan, C., Bloom, L. B., Helquist, S. A., Kool, E. T., & Reha-Krantz, L. J. (2006). Dynamics of Nucleotide Incorporation:  Snapshots Revealed by 2-Aminopurine Fluorescence Studies†. Biochemistry, 45(9), 2836-2844. doi:10.1021/bi051644sJoyce, C. M., Potapova, O., DeLucia, A. M., Huang, X., Basu, V. P., & Grindley, N. D. F. (2008). Fingers-Closing and Other Rapid Conformational Changes in DNA Polymerase I (Klenow Fragment) and Their Role in Nucleotide Selectivity†. Biochemistry, 47(23), 6103-6116. doi:10.1021/bi7021848Vande Berg, B. J., Beard, W. A., & Wilson, S. H. (2000). DNA Structure and Aspartate 276 Influence Nucleotide Binding to Human DNA Polymerase β. Journal of Biological Chemistry, 276(5), 3408-3416. doi:10.1074/jbc.m002884200Showalter, A. K., & Tsai, M.-D. (2002). A Reexamination of the Nucleotide Incorporation Fidelity of DNA Polymerases†. Biochemistry, 41(34), 10571-10576. doi:10.1021/bi026021iShah, A. M., Li, S.-X., Anderson, K. S., & Sweasy, J. B. (2001). Y265H Mutator Mutant of DNA Polymerase β. Journal of Biological Chemistry, 276(14), 10824-10831. doi:10.1074/jbc.m008680200Rothwell, P. J., Mitaksov, V., & Waksman, G. (2005). Motions of the Fingers Subdomain of Klentaq1 Are Fast and Not Rate Limiting: Implications for the Molecular Basis of Fidelity in DNA Polymerases. Molecular Cell, 19(3), 345-355. doi:10.1016/j.molcel.2005.06.032Patel, S. S., Wong, I., & Johnson, K. A. (1991). Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry, 30(2), 511-525. doi:10.1021/bi00216a029Luo, G., Wang, M., Konigsberg, W. H., & Xie, X. S. (2007). Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase. Proceedings of the National Academy of Sciences, 104(31), 12610-12615. doi:10.1073/pnas.0700920104Joyce, C. M., & Benkovic, S. J. (2004). DNA Polymerase Fidelity:  Kinetics, Structure, and Checkpoints†. Biochemistry, 43(45), 14317-14324. doi:10.1021/bi048422zFiala, K. A., & Suo, Z. (2004). Mechanism of DNA Polymerization Catalyzed bySulfolobus solfataricusP2 DNA Polymerase IV†. Biochemistry, 43(7), 2116-2125. doi:10.1021/bi035746zCramer, J., & Restle, T. (2005). Pre-steady-state Kinetic Characterization of the DinB Homologue DNA Polymerase ofSulfolobus solfataricus. Journal of Biological Chemistry, 280(49), 40552-40558. doi:10.1074/jbc.m504481200Choi, J.-Y., & Guengerich, F. P. (2005). Adduct Size Limits Efficient and Error-free Bypass Across Bulky N2-Guanine DNA Lesions by Human DNA Polymerase η. Journal of Molecular Biology, 352(1), 72-90. doi:10.1016/j.jmb.2005.06.079Olsen, T. J., Choi, Y., Sims, P. C., Gul, O. T., Corso, B. L., Dong, C., … Weiss, G. A. (2013). Electronic Measurements of Single-Molecule Processing by DNA Polymerase I (Klenow Fragment). Journal of the American Chemical Society, 135(21), 7855-7860. doi:10.1021/ja311603rAllen, W. J., Rothwell, P. J., & Waksman, G. (2008). An intramolecular FRET system monitors fingers subdomain opening in Klentaq1. Protein Science, 17(3), 401-408. doi:10.1110/ps.073309208Johnson, S. J., & Beese, L. S. (2004). Structures of Mismatch Replication Errors Observed in a DNA Polymerase. Cell, 116(6), 803-816. doi:10.1016/s0092-8674(04)00252-1Yin, Y. W., & Steitz, T. A. (2004). The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase. Cell, 116(3), 393-404. doi:10.1016/s0092-8674(04)00120-5Golosov, A. A., Warren, J. J., Beese, L. S., & Karplus, M. (2010). The Mechanism of the Translocation Step in DNA Replication by DNA Polymerase I: A Computer Simulation Analysis. Structure, 18(1), 83-93. doi:10.1016/j.str.2009.10.014Zhang, C., & Burton, Z. F. (2004). Transcription Factors IIF and IIS and Nucleoside Triphosphate Substrates as Dynamic Probes of the Human RNA Polymerase II Mechanism. Journal of Molecular Biology, 342(4), 1085-1099. doi:10.1016/j.jmb.2004.07.070Nedialkov, Y. A., Gong, X. Q., Hovde, S. L., Yamaguchi, Y., Handa, H., Geiger, J. H., … Burton, Z. F. (2003). NTP-driven Translocation by Human RNA Polymerase II. Journal of Biological Chemistry, 278(20), 18303-18312. doi:10.1074/jbc.m301103200Gong, X. Q., Zhang, C., Feig, M., & Burton, Z. F. (2005). Dynamic Error Correction and Regulation of Downstream Bubble Opening by Human RNA Polymerase II. Molecular Cell, 18(4), 461-470. doi:10.1016/j.molcel.2005.04.011Guajardo, R., & Sousa, R. (1997). A model for the mechanism of polymerase translocation 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 265(1), 8-19. doi:10.1006/jmbi.1996.0707Thomen, P., Lopez, P. J., & Heslot, F. (2005). Unravelling the Mechanism of RNA-Polymerase Forward Motion by Using Mechanical Force. Physical Review Letters, 94(12). doi:10.1103/physrevlett.94.128102Larson, M. H., Zhou, J., Kaplan, C. D., Palangat, M., Kornberg, R. D., Landick, R., & Block, S. M. (2012). Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proceedings of the National Academy of Sciences, 109(17), 6555-6560. doi:10.1073/pnas.1200939109Bar-Nahum, G., Epshtein, V., Ruckenstein, A. E., Rafikov, R., Mustaev, A., & Nudler, E. (2005). A Ratchet Mechanism of Transcription Elongation and Its Control. Cell, 120(2), 183-193. doi:10.1016/j.cell.2004.11.045Bai, L., Fulbright, R. M., & Wang, M. D. (2007). Mechanochemical Kinetics of Transcription Elongation. Physical Review Letters, 98(6). doi:10.1103/physrevlett.98.068103Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature, 438(7067), 460-465. doi:10.1038/nature04268Dangkulwanich, M., Ishibashi, T., Liu, S., Kireeva, M. L., Lubkowska, L., Kashlev, M., & Bustamante, C. J. (2013). Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife, 2. doi:10.7554/elife.00971Lieberman, K. R., Dahl, J. M., Mai, A. H., Cox, A., Akeson, M., & Wang, H. (2013). Kinetic Mechanism of Translocation and dNTP Binding in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 135(24), 9149-9155. doi:10.1021/ja403640bLieberman, K. R., Dahl, J. M., Mai, A. H., Akeson, M., & Wang, H. (2012). Dynamics of the Translocation Step Measured in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 134(45), 18816-18823. doi:10.1021/ja3090302Dahl, J. M., Mai, A. H., Cherf, G. M., Jetha, N. N., Garalde, D. R., Marziali, A., … Lieberman, K. R. (2012). Direct Observation of Translocation in Individual DNA Polymerase Complexes. Journal of Biological Chemistry, 287(16), 13407-13421. doi:10.1074/jbc.m111.338418Rodriguez, I., Lazaro, J. M., Blanco, L., Kamtekar, S., Berman, A. J., Wang, J., … de Vega, M. (2005). A specific subdomain in  29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings of the National Academy of Sciences, 102(18), 6407-6412. doi:10.1073/pnas.0500597102Morin, J. A., Cao, F. J., Valpuesta, J. M., Carrascosa, J. L., Salas, M., & Ibarra, B. (2012). Manipulation of single polymerase-DNA complexes: A mechanical view of DNA unwinding during replication. Cell Cycle, 11(16), 2967-2968. doi:10.4161/cc.21389Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical Processes in Biochemistry. Annual Review of Biochemistry, 73(1), 705-748. doi:10.1146/annurev.biochem.72.121801.161542Jahnel, M., Behrndt, M., Jannasch, A., Schäffer, E., & Grill, S. W. (2011). Measuring the complete force field of an optical trap. Optics Letters, 36(7), 1260. doi:10.1364/ol.36.001260Soengas, M. S., Esteban, J. A., Lázaro, J. M., Bernad, A., Blasco, M. A., Salas, M., & Blanco, L. (1992). Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3′-5′ exonuclease and strand-displacement activities. The EMBO Journal, 11(11), 4227-4237. doi:10.1002/j.1460-2075.1992.tb05517.xSoengas, M. S., Gutiérrez, C., & Salas, M. (1995). Helix-destabilizing Activity of φ29 Single-stranded DNA Binding Protein: Effect on the Elongation Rate During Strand Displacement DNA Replication. Journal of Molecular Biology, 253(4), 517-529. doi:10.1006/jmbi.1995.0570De Vega, M., Lazaro, J. M., Salas, M., & Blanco, L. (1996). Primer-terminus stabilization at the 3′-5′ exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. The EMBO Journal, 15(5), 1182-1192. doi:10.1002/j.1460-2075.1996.tb00457.xVisscher, K., Schnitzer, M. J., & Block, S. M. (1999). Single kinesin molecules studied with a molecular force clamp. Nature, 400(6740), 184-189. doi:10.1038/22146Pandey, M., & Patel, S. S. (2014). Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps. Cell Reports, 6(6), 1129-1138. doi:10.1016/j.celrep.2014.02.025Truniger, V. (2002). A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Research, 30(7), 1483-1492. doi:10.1093/nar/30.7.1483Berman, A. J., Kamtekar, S., Goodman, J. L., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2007). Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. The EMBO Journal, 26(14), 3494-3505. doi:10.1038/sj.emboj.7601780Thomen, P., Lopez, P. J., Bockelmann, U., Guillerez, J., Dreyfus, M., & Heslot, F. (2008). T7 RNA Polymerase Studied by Force Measurements Varying Cofactor Concentration. Biophysical Journal, 95(5), 2423-2433. doi:10.1529/biophysj.107.125096Keller, D., & Bustamante, C. (2000). The Mechanochemistry of Molecular Motors. Biophysical Journal, 78(2), 541-556. doi:10.1016/s0006-3495(00)76615-xHerbert, K. M., Greenleaf, W. J., & Block, S. M. (2008). Single-Molecule Studies of RNA Polymerase: Motoring Along. Annual Review of Biochemistry, 77(1), 149-176. doi:10.1146/annurev.biochem.77.073106.100741Wong, I., Patel, S. S., & Johnson, K. A. (1991). An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry, 30(2), 526-537. doi:10.1021/bi00216a030Lowe, L. G., & Guengerich, F. P. (1996). Steady-State and Pre-Steady-State Kinetic Analysis of dNTP Insertion Opposite 8-Oxo-7,8-dihydroguanine byEscherichia coliPolymerases I exo-and II exo- †. Biochemistry, 35(30), 9840-9849. doi:10.1021/bi960485xKirmizialtin, S., Nguyen, V., Johnson, K. A., & Elber, R. (2012). How Conformational Dynamics of DNA Polymerase Select Correct Substrates: Experiments and Simulations. Structure, 20(4), 618-627. doi:10.1016/j.str.2012.02.018Donlin, M. J., Patel, S. S., & Johnson, K. A. (1991). Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry, 30(2), 538-546. doi:10.1021/bi00216a031Li, Y. (1998). Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. The EMBO Journal, 17(24), 7514-7525. doi:10.1093/emboj/17.24.7514Lieberman, K. R., Dahl, J. M., & Wang, H. (2014). Kinetic Mechanism at the Branchpoint between the DNA Synthesis and Editing Pathways in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 136(19), 7117-7131. doi:10.1021/ja5026408Subuddhi, U., Hogg, M., & Reha-Krantz, L. J. (2008). Use of 2-Aminopurine Fluorescence To Study the Role of the β Hairpin in the Proofreading Pathway Catalyzed by the Phage T4 and RB69 DNA Polymerases†. Biochemistry, 47(23), 6130-6137. doi:10.1021/bi800211fShamoo, Y., & Steitz, T. A. (1999). Building a Replisome from Interacting Pieces. Cell, 99(2), 155-166. doi:10.1016/s0092-8674(00)81647-5Lamichhane, R., Berezhna, S. Y., Gill, J. P., Van der Schans, E., & Millar, D. P. (2013). Dynamics of Site Switching in DNA Polymerase. Journal of the American Chemical Society, 135(12), 4735-4742. doi:10.1021/ja311641bKamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019Hogg, M., Wallace, S. S., & Doublié, S. (2004). Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. The EMBO Journal, 23(7), 1483-1493. doi:10.1038/sj.emboj.7600150Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on Progress in Physics, 75(12), 126001. doi:10.1088/0034-4885/75/12/126001Cao, F. J., & Feito, M. (2009). Thermodynamics of feedback controlled systems. Physical Review E, 79(4). doi:10.1103/physreve.79.041118Cao, F. J., Dinis, L., & Parrondo, J. M. R. (2004). Feedback Control in a Collective Flashing Ratchet. Physical Review Letters, 93(4). doi:10.1103/physrevlett.93.040603Bier, M. (2007). The stepping motor protein as a feedback control ratchet. Biosystems, 88(3), 301-307. doi:10.1016/j.biosystems.2006.07.013Astumian, R. D. (1997). Thermodynamics and Kinetics of a Brownian Motor. Science, 276(5314), 917-922. doi:10.1126/science.276.5314.917Komissarova, N., & Kashlev, M. (1997). Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3’ end of the RNA intact and extruded. Proceedings of the National Academy of Sciences, 94(5), 1755-1760. doi:10.1073/pnas.94.5.1755Brueckner, F., & Cramer, P. (2008). Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation. Nature Structural & Molecular Biology, 15(8), 811-818. doi:10.1038/nsmb.145

    Identification of Surprisingly Diverse Type IV Pili, across a Broad Range of Gram-Positive Bacteria

    Get PDF
    In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available.To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons (http://signalfind.org). Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes.We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV pilus-like structures. Its use in combination with other currently available computational tools should improve the accuracy of predicting the subcellular localization of bacterial proteins
    corecore