493 research outputs found
Recommended from our members
Personal development in counselling psychology training : a critical investigation of the views and experiences of trainers and trainees
It has been suggested that, despite its increased centrality in the training of counsellors and counselling psychologists, personal development remains a poorly articulated area that suffers from a surprising scarcity of literature. The present study set out to investigate these claims and to begin to address this imbalance. A critical analysis of the literature identified four key areas: 1) the definition of personal development, 2) the facilitation of personal development, 3) the assessment of personal development and 4)the selection of trainees, in which complex but important questions remained. A mixed qualitative-quantitative methodology was used to investigate the views and experiences of UK counselling psychology trainers and trainees in relation to these key areas. Themes from a grounded theory analysis of 8 in-depth interviews enabled the articulation of a model of personal development and informed the development of a quantitative questionnaire survey instrument that was used to test and expand the interview findings. Eighty-eight respondents, comprising trainers and trainees from four training institutions, participated in the survey. Findings supported viewing personal development during training as a complex, broad and holistic concept and process that is affected by a diversity of personal and professional experiences, rather than as something that can be equated with the experience of personal therapy. Overall, views varied considerably amongst participants, and a significant difference was observed between the ways that trainers and trainees defined personal development. Many respondents reported feeling dissatisfied with course provisions; thinking that personal development was not adequately defined or integrated in training; that courses were too academic and not sufficiently experiential; and believing that improvements should be made to the way in which personal development is assessed during training and at selection. Differences in views and experiences were explained in terms of divergent conceptualisations of personal development and a variety of philosophical tensions. Implications for counselling psychology training were discussed, the methodology of the project evaluated and suggestions for further research proposed
Structural Probe of a Glass Forming Liquid: Generalized Compressibility
We introduce a new quantity to probe the glass transition. This quantity is a
linear generalized compressibility which depends solely on the positions of the
particles. We have performed a molecular dynamics simulation on a glass forming
liquid consisting of a two component mixture of soft spheres in three
dimensions. As the temperature is lowered (or as the density is increased), the
generalized compressibility drops sharply at the glass transition, with the
drop becoming more and more abrupt as the measurement time increases. At our
longest measurement times, the drop occurs approximately at the mode coupling
temperature . The drop in the linear generalized compressibility occurs at
the same temperature as the peak in the specific heat. By examining the
inherent structure energy as a function of temperature, we find that our
results are consistent with the kinetic view of the glass transition in which
the system falls out of equilibrium. We find no size dependence and no evidence
for a second order phase transition though this does not exclude the
possibility of a phase transition below the observed glass transition
temperature. We discuss the relation between the linear generalized
compressibility and the ordinary isothermal compressibility as well as the
static structure factor.Comment: 18 pages, Latex, 26 encapsulated postscript figures, revised paper is
shorter, to appear in Phys. Rev.
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
The Effect of Chronic Endurance Exercise on Serum Levels of MOTS-c and Humanin in Professional Athletes
Background: Humanin and the mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are mitochondrial encoded peptides involved in energy metabolism, cytoprotection, longevity, insulin sensitivity and their expression decrease with age. Levels of these molecules have been shown to respond to acute exercise, however little is known about their modulation under different chronic exercise conditions. In this study, we aim to compare levels of Humanin and MOTS-c in non-athletes vs professional (moderate and high endurance) athletes. Methods: Serum samples were collected from 30 non-athlete controls and 75 professional athletes (47 low/moderate endurance and 28 high endurance athletes). Levels of Humanin and MOTS-c were measured by the enzyme linked immunosorbent aaasy (ELISA) and linear models were generated to compare the effect of different levels of endurance exercise on these factors in different age groups. Spearman correlation was used to assess the correlation between these factors in athletes and non-athletes. Results: We showed that professional athletes had lower levels of MOTS-c and higher levels of Humanin than sedentary controls. Within the athletic groups, high endurance athletes had lower levels of Humanin than low/moderate endurance athletes of the same gender/age groups, whereas MOTS-c levels did not change between the subgroups. Humanin and MOTS-c levels were highly correlated in athletes, but not in sedentary controls. Conclusions: This pilot data suggests that serum levels of the mitochondrial proteins MOTS-c and Humanin change in response to chronic exercise with implications on energy metabolism and performance.This research was funded by the Qatar National Research Fund (QNRF), grant number NPRP13S-1230-190008, and Qatar University, grant number QUCG-BRC-21/22-1 (MAE).Scopu
New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
(abridged) The heating mechanism at high densities during M dwarf flares is
poorly understood. Spectra of M dwarf flares in the optical and
near-ultraviolet wavelength regimes have revealed three continuum components
during the impulsive phase: 1) an energetically dominant blackbody component
with a color temperature of T 10,000 K in the blue-optical, 2) a smaller
amount of Balmer continuum emission in the near-ultraviolet at lambda 3646
Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer
lines. These properties are not reproduced by models that employ a typical
"solar-type" flare heating level in nonthermal electrons, and therefore our
understanding of these spectra is limited to a phenomenological interpretation.
We present a new 1D radiative-hydrodynamic model of an M dwarf flare from
precipitating nonthermal electrons with a large energy flux of erg
cm s. The simulation produces bright continuum emission from a
dense, hot chromospheric condensation. For the first time, the observed color
temperature and Balmer jump ratio are produced self-consistently in a
radiative-hydrodynamic flare model. We find that a T 10,000 K
blackbody-like continuum component and a small Balmer jump ratio result from
optically thick Balmer and Paschen recombination radiation, and thus the
properties of the flux spectrum are caused by blue light escaping over a larger
physical depth range compared to red and near-ultraviolet light. To model the
near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer
lines, we include the extra Balmer continuum opacity from Landau-Zener
transitions that result from merged, high order energy levels of hydrogen in a
dense, partially ionized atmosphere. This reveals a new diagnostic of ambient
charge density in the densest regions of the atmosphere that are heated during
dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar
Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015):
updated to include comments by Guest Editor. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3'-end processing
Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of sixteen novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modelled the residues affected by missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of hypertrophic cardiomyopathy and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism
The COMPASS Experiment at CERN
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and
hadron beams for the investigation of the nucleon spin structure and the
spectroscopy of hadrons. One or more outgoing particles are detected in
coincidence with the incoming muon or hadron. A large polarized target inside a
superconducting solenoid is used for the measurements with the muon beam.
Outgoing particles are detected by a two-stage, large angle and large momentum
range spectrometer. The setup is built using several types of tracking
detectors, according to the expected incident rate, required space resolution
and the solid angle to be covered. Particle identification is achieved using a
RICH counter and both hadron and electromagnetic calorimeters. The setup has
been successfully operated from 2002 onwards using a muon beam. Data with a
hadron beam were also collected in 2004. This article describes the main
features and performances of the spectrometer in 2004; a short summary of the
2006 upgrade is also given.Comment: 84 papes, 74 figure
- …