70 research outputs found

    Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalogue

    Get PDF
    We present refined coordinates and proper motion data for the high proper motion (HPM) stars in the Luyten Half-Second (LHS) catalogue. The positional uncertainty in the original Luyten catalogue is typically >10" and is often >30". We have used the digital scans of the Palomar Observatory Sky Survey (POSS) I and POSS II plates to derive more accurate positions and proper motions of the objects. Out of the 4470 candidates in the LHS catalogue, 4323 objects were manually re-identified in the POSS I and POSS II scans. A small fraction of the stars were not found due to the lack of finder charts and digitized POSS II scans. The uncertainties in the revised positions are typically ~2", but can be as high as ~8" in a few cases; this is a large improvement over the original data. Cross-correlation with the Tycho-2 and Hipparcos catalogues yielded 819 candidates (with m_R < 12). For these brighter sources, the position and proper motion data have been replaced with the more accurate Tycho/Hipparcos data. In total, we have revised proper motion measurements and coordinates for 4040 stars and revised coordinates for 4330 stars, which are presented here.Comment: 108 pages. Accepted for Publication in ApJ Suppl. Some errors caused by the transcription errors in the original LHS catalogue have been corrected in this resubmission. The most current version of the catalogue is also available online at http://www.stsci.edu/~ksahu/lh

    Lucky Imaging survey for southern M dwarf binaries

    Full text link
    While M dwarfs are the most abundant stars in the Milky Way, there is still large uncertainty about their basic physical properties (mass, luminosity, radius, etc.) as well as their formation environment. Precise knowledge of multiplicity characteristics and how they change in this transitional mass region, between Sun-like stars on the one side and very low mass stars and brown dwarfs on the other, provide constraints on low mass star and brown dwarf formation. In the largest M dwarf binary survey to date, we search for companions to active, and thus preferentially young, M dwarfs in the solar neighbourhood. We study their binary/multiple properties, such as the multiplicity frequency and distributions of mass ratio and separation, and identify short period visual binaries, for which orbital parameters and hence dynamical mass estimates can be derived in the near future. The observations are carried out in the SDSS i' and z' band using the Lucky Imaging camera AstraLux Sur at the ESO 3.5 m New Technology Telescope. In the first part of the survey, we observed 124 M dwarfs of integrated spectral types M0-M6 and identified 34 new and 17 previously known companions to 44 stars. We derived relative astrometry and component photometry for these systems. More than half of the binaries have separations smaller than 1 arcsec and would have been missed in a simply seeing-limited survey. Correcting our sample for selection effects yields a multiplicity fraction of 32+/-6% for 108 M dwarfs within 52 pc and with angular separations of 0.1-6.0 arcsec, corresponding to projected separation 3-180 AU at median distance 30 pc. Compared to early-type M dwarfs (M>0.3M_Sun), later type (and hence lower mass) M dwarf binaries appear to have closer separations, and more similar masses.Comment: 18 pages, 9 figures. Minor corrections and changes. Revised to match accepted A&A versio

    Magnetic stars from a FEROS cool Ap star survey

    Get PDF
    New magnetic Ap stars with split Zeeman components are presented. These stars were discovered from observations with the Fibre-fed Extended Range Optical Spectrograph (FEROS) spectrograph at the European Southern Observatory (ESO) 2.2-m telescope. 15 new magnetic stars are analysed here. Several stars with very strong magnetic fields were found, including HD 70702 with a 15-kG magnetic field strength, and HD 168767 with a 16.5-kG magnetic field strength measured using split Zeeman components of spectral lines and by comparison with synthetic calculations. The physical parameters of the stars were estimated from photometric and spectroscopic data. Together with previously published results for stars with strong magnetic fields, the relationship between magnetic field strength and rotation period is discussed

    Spitzer 24 micron Survey of Debris Disks in the Pleiades

    Get PDF
    We performed a 24 micron 2 Deg X 1 Deg survey of the Pleiades cluster, using the MIPS instrument on Spitzer. Fifty four members ranging in spectral type from B8 to K6 show 24 micron fluxes consistent with bare photospheres. All Be stars show excesses attributed to free-free emission in their gaseous envelopes. Five early-type stars and four solar-type stars show excesses indicative of debris disks. We find a debris disk fraction of 25 % for B-A members and 10 % for F-K3 ones. These fractions appear intermediate between those for younger clusters and for the older field stars. They indicate a decay with age of the frequency of the dust-production events inside the planetary zone, with similar time scales for solar-mass stars as have been found previously for A-stars.Comment: accepted to Ap

    Debris disks in main sequence binary systems

    Get PDF
    We observed 69 A3-F8 main sequence binary star systems using the Multiband Imaging Photometer for Spitzer onboard the Spitzer Space Telescope. We find emission significantly in excess of predicted photospheric flux levels for 9(+4/-3)% and 40(+7/-6)% of these systems at 24 and 70 microns, respectively. Twenty two systems total have excess emission, including four systems that show excess emission at both wavelengths. A very large fraction (nearly 60%) of observed binary systems with small (<3 AU) separations have excess thermal mission. We interpret the observed infrared excesses as thermal emission from dust produced by collisions in planetesimal belts. The incidence of debris disks around main sequence A3-F8 binaries is marginally higher than that for single old AFGK stars. Whatever combination of nature (birth conditions of binary systems) and nurture (interactions between the two stars) drives the evolution of debris disks in binary systems, it is clear that planetesimal formation is not inhibited to any great degree. We model these dust disks through fitting the spectral energy distributions and derive typical dust temperatures in the range 100--200 K and typical fractional luminosities around 10^-5, with both parameters similar to other Spitzer-discovered debris disks. Our calculated dust temperatures suggest that about half the excesses we observe are derived from circumbinary planetesimal belts and around one third of the excesses clearly suggest circumstellar material. Three systems with excesses have dust in dynamically unstable regions, and we discuss possible scenarios for the origin of this short-lived dust.Comment: ApJ, in press. 57 pages, including 7 figures (one of which is in color

    Abundance analysis of prime B-type targets for asteroseismology II. B6--B9.5 stars in the field of view of the CoRoT

    Get PDF
    The CoRoT satellite is collecting precise time-resolved photometry for tens of asteroseismology targets. To ensure a correct interpretation of the CoRoT data, the atmospheric parameters, chemical compositions, and rotational velocities of the stars must be determined. The main goal of the ground-based seismology support program for the CoRoT mission was to obtain photometric and spectroscopic data for stars in the fields monitored by the satellite. These ground-based observations were collected in the GAUDI archive. High-resolution spectra of more than 200 B-type stars are available in this database, and about 45% of them is analysed here. To derive the effective temperature of the stars, we used photometric indices. Surface gravities were obtained by comparing observed and theoretical Balmer line profiles. To determine the chemical abundances and rotational velocities, we used a spectrum synthesis method, which consisted of comparing the observed spectrum with theoretical ones based on the assumption of LTE. Atmospheric parameters, chemical abundances, and rotational velocities were determined for 89 late-B stars. The dominant species in their spectra are iron-peak elements. The average Fe abundance is 7.24+/-0.45 dex. The average rotational velocity is 126 km/sec, but there are 13 and 20 stars with low and moderate Vsin i values, respectively. The analysis of this sample of 89 late B-type stars reveals many chemically peculiar (CP) stars. Some of them were previously known, but at least 9 new CP candidates, among which at least two HgMn stars, are identified in our study. These CP stars as a group exhibit Vsin i values lower than the stars with normal surface chemical composition.Comment: 21 pages, 13 figures, accepted to Astronomy and Astrophysic

    The HARPS search for southern extrasolar planets. XXIII. 8 planetary companions to low-activity solar-type stars

    Full text link
    In this paper, we present our HARPS radial-velocity data for eight low-activity solar-type stars belonging to the HARPS volume-limited sample: HD6718, HD8535, HD28254, HD290327, HD43197, HD44219, HD148156, and HD156411. Keplerian fits to these data reveal the presence of low-mass companions around these targets. With minimum masses ranging from 0.58 to 2.54 MJup, these companions are in the planetary mass domain. The orbital periods of these planets range from slightly less than one to almost seven years. The eight orbits presented in this paper exhibit a wide variety of eccentricities: from 0.08 to above 0.8.Comment: 8 pages, 2 figures, accepted for publication in A&

    XHIP-II: Clusters and associations

    Full text link
    Context. In the absence of complete kinematic data it has not previously been possible to furnish accurate lists of member stars for all moving groups. There has been an unresolved dispute concerning the apparent inconsistency of the Hipparcos parallax distance to the Pleiades. Aims. To find improved candidate lists for clusters and associations represented among Hipparcos stars, to establish distances, and to cast light on the Pleiades distance anomaly. Methods. We use a six dimensional fitting procedure to identify candidates, and plot CMDs for 20 of the nearest groups. We calculate the mean parallax distance for all groups. Results. We identify lists of candidates and calculated parallax distances for 42 clusters and 45 associations represented within the Hipparcos catalogue. We find agreement between parallax distance and photometric distances for the most important clusters. For single stars in the Pleiades we find mean parallax distance 125.6 \pm 4.2 pc and photometric distance 132 \pm 3 pc calibrated to nearby groups of similar in age and composition. This gives no reason to doubt either the Hipparcos database or stellar evolutionary theory.Comment: Accepted for publication in Astronomy Letters, 10 pages, 2 fig

    The epsilon Chamaeleontis young stellar group and the characterization of sparse stellar clusters

    Full text link
    We present the outcomes of a Chandra X-ray Observatory snapshot study of five nearby Herbig Ae/Be (HAeBe) stars which are kinematically linked with the Oph-Sco-Cen Association (OSCA). Optical photometric and spectroscopic followup was conducted for the HD 104237 field. The principal result is the discovery of a compact group of pre-main sequence (PMS) stars associated with HD 104237 and its codistant, comoving B9 neighbor epsilon Chamaeleontis AB. We name the group after the most massive member. The group has five confirmed stellar systems ranging from spectral type B9-M5, including a remarkably high degree of multiplicity for HD 104237 itself. The HD 104237 system is at least a quintet with four low mass PMS companions in nonhierarchical orbits within a projected separation of 1500 AU of the HAeBe primary. Two of the low-mass members of the group are actively accreting classical T Tauri stars. The Chandra observations also increase the census of companions for two of the other four HAeBe stars, HD 141569 and HD 150193, and identify several additional new members of the OSCA. We discuss this work in light of several theoretical issues: the origin of X-rays from HAeBe stars; the uneventful dynamical history of the high-multiplicity HD 104237 system; and the origin of the epsilon Cha group and other OSCA outlying groups in the context of turbulent giant molecular clouds. Together with the similar eta Cha cluster, we paint a portrait of sparse stellar clusters dominated by intermediate-mass stars 5-10 Myr after their formation.Comment: Accepted for publication in the Astrophysical Journal. 32 pages and 7 figure

    Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?

    Full text link
    (abridged) In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the results obtained on the early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the spectra. Our dedicated radial-velocity measurement method was used to monitor the star's radial velocities over five years. We also use complementary, high angular resolution and high-contrast images taken with PUEO at CFHT. We show that Theta Cygni radial velocities are quasi-periodically variable, with a ~150-day period. These variations are not due to the ~0.35-Msun stellar companion that we detected in imaging at more than 46 AU from the star. The absence of correlation between the bisector velocity span variations and the radial velocity variations for this 7 km/s vsini star, as well as other criteria indicate that the observed radial velocity variations are not due to stellar spots. The observed amplitude of the bisector velocity span variations also seems to rule out stellar pulsations. However, we observe a peak in the bisector velocity span periodogram at the same period as the one found in the radial velocity periodogram, which indicates a probable link between these radial velocity variations and the low amplitude lineshape variations which are of stellar origin. Long-period variations are not expected from this type of star to our knowledge. If a stellar origin (hence of new type) was to be confirmed for these long-period radial velocity variations, this would have several consequences on the search for planets around main-sequence stars, both in terms of observational strategy and data analysis. An alternative explanation for these variable radial velocities is the presence of at least one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)Comment: 9 pages, accepted in A
    corecore