212 research outputs found
Inferring statistics of planet populations by means of automated microlensing searches
(abridged) The study of other worlds is key to understanding our own, and not
only provides clues to the origin of our civilization, but also looks into its
future. Rather than in identifying nearby systems and learning about their
individual properties, the main value of the technique of gravitational
microlensing is in obtaining the statistics of planetary populations within the
Milky Way and beyond. Only the complementarity of different techniques
currently employed promises to yield a complete picture of planet formation
that has sufficient predictive power to let us understand how habitable worlds
like ours evolve, and how abundant such systems are in the Universe. A
cooperative three-step strategy of survey, follow-up, and anomaly monitoring of
microlensing targets, realized by means of an automated expert system and a
network of ground-based telescopes is ready right now to be used to obtain a
first census of cool planets with masses reaching even below that of Earth
orbiting K and M dwarfs in two distinct stellar populations, namely the
Galactic bulge and disk. The hunt for extra-solar planets acts as a principal
science driver for time-domain astronomy with robotic-telescope networks
adopting fully-automated strategies. Several initiatives, both into facilities
as well as into advanced software and strategies, are supposed to see the
capabilities of gravitational microlensing programmes step-wise increasing over
the next 10 years. New opportunities will show up with high-precision
astrometry becoming available and studying the abundance of planets around
stars in neighbouring galaxies becoming possible. Finally, we should not miss
out on sharing the vision with the general public, and make its realization to
profit not only the scientists but all the wider society.Comment: 10 pages in PDF format. White paper submitted to ESA's Exo-Planet
Roadmap Advisory Team (EPR-AT); typos corrected. The embedded figures are
available from the author on request. See also "Towards A Census of
Earth-mass Exo-planets with Gravitational Microlensing" by J.P. Beaulieu, E.
Kerins, S. Mao et al. (arXiv:0808.0005
A pair of temperate sub-Neptunes transiting the star EPIC 212737443
We report the validation of a new planetary system around the K3 star EPIC 212737443 using a combination of K2 photometry, follow-up high resolution imaging and spectroscopy. The system consists of two sub-Neptune sized transiting planets with radii of 2.6R⊕, and 2.7R⊕, with orbital periods of 13.6 days and 65.5 days, equilibrium temperatures of 536 K and 316 K respectively. In the context of validated K2 systems, the outer planet has the longest precisely measured orbital period, as well as the lowest equilibrium temperature for a planet orbiting a star of spectral type earlier than M. The two planets in this system have a mutual Hill radius of ΔRH = 36, larger than most other known transiting multi-planet systems, suggesting the existence of another (possibly non-transiting) planet, or that the system is not maximally packed
I. Flux and color variations of the quadruply imaged quasar HE 0435-1223
aims: We present VRi photometric observations of the quadruply imaged quasar
HE 0435-1223, carried out with the Danish 1.54m telescope at the La Silla
Observatory. Our aim was to monitor and study the magnitudes and colors of each
lensed component as a function of time. methods: We monitored the object during
two seasons (2008 and 2009) in the VRi spectral bands, and reduced the data
with two independent techniques: difference imaging and PSF (Point Spread
Function) fitting.results: Between these two seasons, our results show an
evident decrease in flux by ~0.2-0.4 magnitudes of the four lensed components
in the three filters. We also found a significant increase (~0.05-0.015) in
their V-R and R-i color indices. conclusions: These flux and color variations
are very likely caused by intrinsic variations of the quasar between the
observed epochs. Microlensing effects probably also affect the brightest "A"
lensed component.Comment: 10 pages, 8 figure
VLT, GROND and Danish telescope observations of transits in the TRAPPIST-1 system
Funding: UGJ acknowledges funding from the Novo Nordisk Foundation Interdisciplinary Synergy Programme grant no. NNF19OC0057374 and from the European Union H2020-MSCA-ITN-2019 under Grant no. 860470 (CHAMELEON). NP’s work was supported by Fundação para a Ciência e a Tecnologia (FCT) through the research grants UIDB/04434/2020 and UIDP/04434/2020. PLP was partly funded by Programa de Iniciación en Investigación-Universidad de Antofagasta, INI-17-03.TRAPPIST-1 is an ultra-cool dwarf that hosts seven known transiting planets. We present photometry of the system obtained using three telescopes at ESO La Silla (the Danish 1.54-m telescope and the 2.2-m MPI telescope) and Paranal (Unit Telescope 1 of the Very Large Telescope). We obtained 18 light curves from the Danish telescope, eight from the 2.2-m and four from the VLT. From these we measure 25 times of mid-transit for four of the planets (b, c, f, g). These light curves and times of mid-transit will be useful in determining the masses and radii of the planets, which show variations in their transit times due to gravitational interactions.PostprintPeer reviewe
The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation
Aims: We present 11 high-precision photometric transit observations of the
transiting super-Earth planet GJ1214b. Combining these data with observations
from other authors, we investigate the ephemeris for possible signs of transit
timing variations (TTVs) using a Bayesian approach.
Methods: The observations were obtained using telescope-defocusing
techniques, and achieve a high precision with random errors in the photometry
as low as 1mmag per point. To investigate the possibility of TTVs in the light
curve, we calculate the overall probability of a TTV signal using Bayesian
methods.
Results: The observations are used to determine the photometric parameters
and the physical properties of the GJ1214 system. Our results are in good
agreement with published values. Individual times of mid-transit are measured
with uncertainties as low as 10s, allowing us to reduce the uncertainty in the
orbital period by a factor of two.
Conclusions: A Bayesian analysis reveals that it is highly improbable that
the observed transit times is explained by TTV, when compared with the simpler
alternative of a linear ephemeris.Comment: Submitted to A&
High-precision photometry by telescope defocussing. III. The transiting planetary system WASP-2
We present high-precision photometry of three transits of the extrasolar
planetary system WASP-2, obtained by defocussing the telescope, and achieving
point-to-point scatters of between 0.42 and 0.73 mmag. These data are modelled
using the JKTEBOP code, and taking into account the light from the
recently-discovered faint star close to the system. The physical properties of
the WASP-2 system are derived using tabulated predictions from five different
sets of stellar evolutionary models, allowing both statistical and systematic
errorbars to be specified. We find the mass and radius of the planet to be M_b
= 0.847 +/- 0.038 +/- 0.024 Mjup and R_b = 1.044 +/- 0.029 +/- 0.015 Rjup. It
has a low equilibrium temperature of 1280 +/- 21 K, in agreement with a recent
finding that it does not have an atmospheric temperature inversion. The first
of our transit datasets has a scatter of only 0.42 mmag with respect to the
best-fitting light curve model, which to our knowledge is a record for
ground-based observations of a transiting extrasolar planet.Comment: Accepted for publication in MNRAS. 9 pages, 3 figures, 10 table
Digging deeper into the dense galactic globular cluster Terzan 5 with electron-multiplying CCDs : variable star detection and new discoveries
Funding: Support for this project is provided by ANID’s Millennium Science Initiative through grant ICN12_009, awarded to the Millennium Institute of Astrophysics (MAS), and by ANID’s Basal project FB210003. M.C. acknowledges additional support from FONDECYT Regular grant #1171273. N.P. acknowledge financial support by FCT–Fundação para a Ciência e a Tecnologia through Portuguese national funds and by FEDER through COMPETE2020-Programa Operacional Competitividade e Internacionalização by the grants UIDB/04434/2020 and UIDP/04434/2020.Context. High frame-rate imaging was employed to mitigate the effects of atmospheric turbulence (seeing) in observations of globular cluster Terzan 5. Aims. High-precision time-series photometry has been obtained with the highest angular resolution so far taken in the crowded central region of Terzan 5, with ground-based telescopes, and ways to avoid saturation of the brightest stars in the field observed. Methods. The Electron-Multiplying Charge Coupled Device (EMCCD) camera installed at the Danish 1.54-m telescope at the ESO La Silla Observatory was employed to produce thousands of short-exposure time images (ten images per second) that were stacked to produce the normal-exposure-time images (minutes). We employed difference image analysis in the stacked images to produce high-precision photometry using the DanDIA pipeline. Results. Light curves of 1670 stars with 242 epochs were analyzed in the crowded central region of Terzan 5 to statistically detect variable stars in the field observed. We present a possible visual counterpart outburst at the position of the pulsar J1748-2446N, and the visual counterpart light curve of the low-mass X-ray binary CX 3. Additionally, we present the discovery of 4 semiregular variables. We also present updated ephemerides and properties of the only RR Lyrae star previously known in the field covered by our observations in Terzan 5. Finally, we report a significant displacement of two sources by ~0.62 and 0.59 arcseconds with respect to their positions in previous images available in the literature.Peer reviewe
Gaia21blx : Complete resolution of a binary microlensing event in the Galactic disk
This work has made use of the IAC-STAR Synthetic CMD computation code. IAC-STAR is supported and maintained by the IT department of the Instituto de Astrofísica de Canarias. EB gratefully acknowledges support from NASA grant 80NSSC19K0291. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium) and the Photometric Science Alerts Team (http://gsaweb.ast.cam.ac.uk/alerts). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work makes use of observations from the Las Cumbres Observatory global telescope network. YT acknowledges the support of DFG priority program SPP 1992 “Exploring the Diversity of Extrasolar Planets” (TS 356/3-1). RFJ acknowledges support for this project provided by ANID’s Millennium Science Initiative through grant ICN12_009, awarded to the Millennium Institute of Astrophysics (MAS), and by ANID’s Basal project FB210003. This work is supported by Polish MNiSW grant DIR/WK/2018/12 and European Union’s Horizon 2020 research and innovation program under grant agreement no. 101004719 (OPTICON-RadioNet Pilot, ORP). We also acknowledge support by the italian PRIN 2022J4H55R – Detection of Earth-like ExoPlanets, CUP D53D23002590006. N.P.’s work was supported by Fundação para a Ciência e a Tecnologia (FCT) through the research grants UIDB/04434/2020 and UIDP/04434/2020. We acknowledge support from the Novo Nordisk Foundation Interdisciplinary Synergy Program grant no. NNF19OC0057374.Context. Gravitational microlensing is a method that is used to discover planet-hosting systems at distances of several kiloparsec in the Galactic disk and bulge. We present the analysis of a microlensing event reported by the Gaia photometric alert team that might have a bright lens. Aims. In order to infer the mass and distance to the lensing system, the parallax measurement at the position of Gaia21blx was used. In this particular case, the source and the lens have comparable magnitudes and we cannot attribute the parallax measured by Gaia to the lens or source alone. Methods. Since the blending flux is important, we assumed that the Gaia parallax is the flux-weighted average of the parallaxes of the lens and source. Combining this assumption with the information from the microlensing models and the finite source effects we were able to resolve all degeneracies and thus obtained the mass, distance, luminosities and projected kinematics of the binary lens and the source. Results. According to the best model, the lens is a binary system at kpc from Earth. It is composed of a G star with and a K star with . The source is likely to be an F subgiant star at kpc with a mass of . Both lenses and the source follow the kinematics of the thin-disk population. We also discuss alternative models, that are disfavored by the data or by prior expectations, however.Peer reviewe
OGLE-2009-BLG-092/MOA-2009-BLG-137: A Dramatic Repeating Event With the Second Perturbation Predicted by Real-Time Analysis
We report the result of the analysis of a dramatic repeating gravitational
microlensing event OGLE-2009-BLG-092/MOA-2009-BLG-137, for which the light
curve is characterized by two distinct peaks with perturbations near both
peaks. We find that the event is produced by the passage of the source
trajectory over the central perturbation regions associated with the individual
components of a wide-separation binary. The event is special in the sense that
the second perturbation, occurring days after the first, was
predicted by the real-time analysis conducted after the first peak,
demonstrating that real-time modeling can be routinely done for binary and
planetary events. With the data obtained from follow-up observations covering
the second peak, we are able to uniquely determine the physical parameters of
the lens system. We find that the event occurred on a bulge clump giant and it
was produced by a binary lens composed of a K and M-type main-sequence stars.
The estimated masses of the binary components are
and , respectively, and they are separated in
projection by . The measured distance to the
lens is . We also detect the orbital motion
of the lens system.Comment: 18 pages, 5 figures, 1 tabl
Physical properties of near-Earth asteroid (2102) Tantalus from multiwavelength observations
Between 2010 and 2017 we have collected new optical and radar observations of the potentially hazardous asteroid (2102) Tantalus from the ESO NTT and Danish telescopes at the La Silla Observatory and from the Arecibo planetary radar. The object appears to be nearly spherical, showing a low amplitude light-curve variation and limited large-scale features in the radar images. The spin-state is difficult to constrain with the available data; including a certain light-curve subset significantly changes the spin-state estimates, and the uncertainties on period determination are significant. Constraining any change in rotation rate was not possible, despite decades of observations. The convex lightcurve-inversion model, with rotational pole at λ = 210 ± 41○ and β = −30 ± 35○, is more flattened than the two models reconstructed by including radar observations: with prograde (λ = 36 ± 23○, β = 30 ± 15○), and with retrograde rotation mode (λ = 180 ± 24○, β = −30 ± 16○). Using data from WISE we were able to determine that the prograde model produces the best agreement in size determination between radar and thermophysical modelling. Radar measurements indicate possible variation in surface properties, suggesting one side might have lower radar albedo and be rougher at centimetre-to-decimetre scale than the other. However, further observations are needed to confirm this. Thermophysical analysis indicates a surface covered in fine-grained regolith, consistent with radar albedo and polarisation ratio measurements. Finally, geophysical investigation of the spin-stability of Tantalus shows that it could be exceeding its critical spin-rate via cohesive forces
- …