77 research outputs found

    Unpacking the interplay between organisational factors and the economic environment in the creation of consumer vulnerability

    Get PDF
    Access to credit is a key enabler of modern life. Yet many consumers face factors beyond their control which sometimes render them unable to borrow from mainstream lenders. This paper documents how firm-related factors determine lending thresholds and shape who is, or is not, a credit-worthy customer. The impact of the 2008 economic recession on lending decisions is explored, an aspect that has been insufficiently discussed even though recessions are cyclical events. Drawing on semiotics and using multiple case studies, the study captures not only which groups were excluded, but also the reasons why. Empirical support is offered for the notion of vulnerability as a fluid state and the role of the timing of decisions as a source of vulnerability is described

    A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages.

    Get PDF
    Conditional expression of diphtheria toxin receptor (DTR) is widely used for tissue-specific ablation of cells. However, diphtheria toxin (DT) crosses the blood-brain barrier, which limits its utility for ablating peripheral cells using Cre drivers that are also expressed in the central nervous system (CNS). Here we report the development of a brain-sparing DT, termed BRAINSPAReDT, for tissue-specific genetic ablation of cells outside the CNS. We prevent blood-brain barrier passage of DT through PEGylation, which polarizes the molecule and increases its size. We validate BRAINSPAReDT with regional genetic sympathectomy: BRAINSPAReDT ablates peripheral but not central catecholaminergic neurons, thus avoiding the Parkinson-like phenotype associated with full dopaminergic depletion. Regional sympathectomy compromises adipose tissue thermogenesis, and renders mice susceptible to obesity. We provide a proof of principle that BRAINSPAReDT can be used for Cre/DTR tissue-specific ablation outside the brain using CNS drivers, while consolidating the link between adiposity and the sympathetic nervous system

    Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects.

    Get PDF
    Anti-obesity drugs in the amphetamine (AMPH) class act in the brain to reduce appetite and increase locomotion. They are also characterized by adverse cardiovascular effects with origin that, despite absence of any in vivo evidence, is attributed to a direct sympathomimetic action in the heart. Here, we show that the cardiac side effects of AMPH originate from the brain and can be circumvented by PEGylation (PEGyAMPH) to exclude its central action. PEGyAMPH does not enter the brain and facilitates SNS activity via theβ2-adrenoceptor, protecting mice against obesity by increasing lipolysis and thermogenesis, coupled to higher heat dissipation, which acts as an energy sink to increase energy expenditure without altering food intake or locomotor activity. Thus, we provide proof-of-principle for a novel class of exclusively peripheral anti-obesity sympathofacilitators that are devoid of any cardiovascular and brain-related side effects

    Road safety evaluation through automatic extraction of road horizontal alignments from Mobile LiDAR System and inductive reasoning based on a decision tree

    Get PDF
    13 p.Safe roads are a necessity for any society because of the high social costs of traffic accidents. This challenge is addressed by a novel methodology that allows us to evaluate road safety from Mobile LiDAR System data, taking advantage of the road alignment due to its influence on the accident rate. Automation is obtained through an inductive reasoning process based on a decision tree that provides a potential risk assessment. To achieve this, a 3D point cloud is classified by an iterative and incremental algorithm based on a 2.5D and 3D Delaunay triangulation, which apply different algorithms sequentially. Next, an automatic extraction process of road horizontal alignment parameters is developed to obtain geometric consistency indexes, based on a joint triple stability criterion. Likewise, this work aims to provide a powerful and effective preventive and/or predictive tool for road safety inspections. The proposed methodology was implemented on three stretches of Spanish roads, each with different traffic conditions that represent the most common road types. The developed methodology was successfully validated through as-built road projects, which were considered as “ground truth.”S

    Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells

    Get PDF
    BACKGROUND: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs) in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs) but poorly in hESCs. METHODOLOGY/PRINCIPAL FINDINGS: Human ribosomal DNA (rDNA) repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA) gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50%) and homologous recombination frequency (>10(-5)) were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. CONCLUSION/SIGNIFICANCE: This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs

    Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement

    Get PDF
    Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a “reward prediction error” (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function

    Mouse Transgenesis Identifies Conserved Functional Enhancers and cis-Regulatory Motif in the Vertebrate LIM Homeobox Gene Lhx2 Locus

    Get PDF
    The vertebrate Lhx2 is a member of the LIM homeobox family of transcription factors. It is essential for the normal development of the forebrain, eye, olfactory system and liver as well for the differentiation of lymphoid cells. However, despite the highly restricted spatio-temporal expression pattern of Lhx2, nothing is known about its transcriptional regulation. In mammals and chicken, Crb2, Dennd1a and Lhx2 constitute a conserved linkage block, while the intervening Dennd1a is lost in the fugu Lhx2 locus. To identify functional enhancers of Lhx2, we predicted conserved noncoding elements (CNEs) in the human, mouse and fugu Crb2-Lhx2 loci and assayed their function in transgenic mouse at E11.5. Four of the eight CNE constructs tested functioned as tissue-specific enhancers in specific regions of the central nervous system and the dorsal root ganglia (DRG), recapitulating partial and overlapping expression patterns of Lhx2 and Crb2 genes. There was considerable overlap in the expression domains of the CNEs, which suggests that the CNEs are either redundant enhancers or regulating different genes in the locus. Using a large set of CNEs (810 CNEs) associated with transcription factor-encoding genes that express predominantly in the central nervous system, we predicted four over-represented 8-mer motifs that are likely to be associated with expression in the central nervous system. Mutation of one of them in a CNE that drove reporter expression in the neural tube and DRG abolished expression in both domains indicating that this motif is essential for expression in these domains. The failure of the four functional enhancers to recapitulate the complete expression pattern of Lhx2 at E11.5 indicates that there must be other Lhx2 enhancers that are either located outside the region investigated or divergent in mammals and fishes. Other approaches such as sequence comparison between multiple mammals are required to identify and characterize such enhancers

    Age-dependent effects of protein restriction on dopamine release

    Get PDF
    FUNDING AND DISCLOSURE This work was supported by the Biotechnology and Biological Sciences Research Council [grant # BB/M007391/1 to J.E.M.], the European Commission [grant # GA 631404 to J.E.M.], The Leverhulme Trust [grant # RPG-2017-417 to J.E.M.] and the Tromsø Research Foundation [grant # 19-SG-JMcC to J. E. M.). The authors declare no conflict of interest. ACKNOWLEDGEMENTS The authors would like to acknowledge the help and support from the staff of the Division of Biomedical Services, Preclinical Research Facility, University of Leicester, for technical support and the care of experimental animals.Peer reviewedPublisher PD

    Computational Approaches for Drug-Induced Liver Injury (DILI) Prediction: State of the Art and Challenges

    Get PDF
    Drug-induced liver injury (DILI) is one of the prevailing causes of fulminant hepatic failure. It is estimated that three idiosyncratic drug reactions out of four result in liver transplantation or death. Additionally, DILI is the most common reason for withdrawal of an approved drug from the market. Therefore, the development of methods for the early identification of hepatotoxic drug candidates is of crucial importance. This review focuses on the current state of cheminformatics strategies being applied for the early in silico prediction of DILI. Herein, we discuss key issues associated with DILI modelling in terms of the data size, imbalance and quality, complexity of mechanisms, and the different levels of hepatotoxicity to model going from general hepatotoxicity to the molecular initiating events of DILI
    corecore