178 research outputs found

    Abandoning sex: multiple origins of asexuality in the ciliate Tetrahymena

    Full text link

    Differences in Population Structure Estimated Within Maternally- and Paternally-inherited Forms of Mitochondria in Lampsilis Siliquoidea (Bivalvia: Unionidae)

    Get PDF
    Mussels in several orders possess two separate mitochondrial lineages: a standard female-inherited form and one inherited only through males. This system of doubly uniparental inheritance (DUI) for mitochondrial genes provides an opportunity to compare the population structure of gene-lineages passed either mother-to-daughter or father-to-son. In the present study, we contrast variation in the male and female haplotype lineages of the American freshwater mussel species, Lampsilis siliquoidea (sometimes called Lampsilis radiata luteola), throughout the Lake Erie, Ohio River, and upper Mississippi River watersheds, and contrast variation with the sequences obtained for the related species/subspecies Lampsilis radiata radiata from Maine. The genetic markers were fragments of the cytochrome c oxidase subunit I gene (COI), which occurs in both mitochondrial types, F (female) and M (male). High haplotype diversity was found in the two independent lineages, although purifying selection against amino acid change appeared to be stronger in the female than the male lineage. Phylogeographical patterns also varied between mitochondria passing through females and males. The female lineage exhibited more population structure, with the occurrence of private or nearly-private haplotypes within two streams, and three others showed restricted haplotype distributions. By contrast to the F-haplotypes, complex phylogenetic structure occurred for M-haplotypes, yet this phylogenetic variation coincided with almost no geographical pattern within haplotypes. Basically, F-haplotypes showed isolation, especially above physical barriers, whereas M-haplotypes did not. A few individuals in the eastern Lake Erie watershed even possessed M-haplotypes of an Atlantic Slope (L. radiata radiata) origin, although their F-haplotypes were typical of Midwestern L. siliquoidea. The finding that mussels package sperm as spermatozuegmata, which float downstream, may underlie greater gene mobility in male-inherited mitochondria. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109, 229–240

    Experimental identification and analysis of macronuclear non-coding RNAs from the ciliate Tetrahymena thermophila

    Get PDF
    The ciliate Tetrahymena thermophila is an important eukaryotic model organism that has been used in pioneering studies of general phenomena, such as ribozymes, telomeres, chromatin structure and genome reorganization. Recent work has shown that Tetrahymena has many classes of small RNA molecules expressed during vegetative growth or sexual reorganization. In order to get an overview of medium-sized (40–500 nt) RNAs expressed from the Tetrahymena genome, we created a size-fractionated cDNA library from macronuclear RNA and analyzed 80 RNAs, most of which were previously unknown. The most abundant class was small nucleolar RNAs (snoRNAs), many of which are formed by an unusual maturation pathway. The modifications guided by the snoRNAs were analyzed bioinformatically and experimentally and many Tetrahymena-specific modifications were found, including several in an essential, but not conserved domain of ribosomal RNA. Of particular interest, we detected two methylations in the 5′-end of U6 small nuclear RNA (snRNA) that has an unusual structure in Tetrahymena. Further, we found a candidate for the first U8 outside metazoans, and an unusual U14 candidate. In addition, a number of candidates for new non-coding RNAs were characterized by expression analysis at different growth conditions

    Genome Evolution of Asexual Organisms and the Paradox of Sex in Eukaryotes

    Get PDF

    The rate of facultative sex governs the number of expected mating types in isogamous species

    Get PDF
    It is unclear why sexually reproducing isogamous species frequently contain just two self-incompatible mating types. Deterministic theory suggests that since rare novel mating types experience a selective advantage (by virtue of their many potential partners), the number of mating types should consistently grow. However, in nature, species with thousands of mating types are exceedingly rare. Several competing theories for the predominance of species with two mating types exist, yet they lack an explanation for how many are possible and in which species to expect high numbers. Here, we present a theoretical null model that explains the distribution of mating type numbers using just three biological parameters: mutation rate, population size and the rate of sex. If the number of mating types results from a mutation–extinction balance, the rate of sexual reproduction plays a crucial role. If sex is facultative and rare (a very common combination in isogamous species), mating type diversity will remain low. In this rare sex regime, small fitness differences between the mating types lead to more frequent extinctions, further lowering mating type diversity. We also show that the empirical literature supports the role of drift and facultativeness of sex as a determinant of mating type dynamics

    The rate of facultative sex governs the number of expected mating types in isogamous species

    Get PDF
    It is unclear why sexually reproducing isogamous species frequently contain just two self-incompatible mating types. Deterministic theory suggests that since rare novel mating types experience a selective advantage (by virtue of their many potential partners), the number of mating types should consistently grow. However, in nature, species with thousands of mating types are exceedingly rare. Several competing theories for the predominance of species with two mating types exist, yet they lack an explanation for how many are possible and in which species to expect high numbers. Here, we present a theoretical null model that explains the distribution of mating type numbers using just three biological parameters: mutation rate, population size and the rate of sex. If the number of mating types results from a mutation–extinction balance, the rate of sexual reproduction plays a crucial role. If sex is facultative and rare (a very common combination in isogamous species), mating type diversity will remain low. In this rare sex regime, small fitness differences between the mating types lead to more frequent extinctions, further lowering mating type diversity. We also show that the empirical literature supports the role of drift and facultativeness of sex as a determinant of mating type dynamics
    corecore