13 research outputs found

    An investigation of the very rare K+ → π+ vvÂŻ decay

    Get PDF
    The NA62 experiment reports an investigation of the K+→π+Îœ Ì„Îœ mode from a sample of K+ decays collected in 2017 at the CERN SPS. The experiment has achieved a single event sensitivity of (0.389±0.024)×10−10, corresponding to 2.2 events assuming the Standard Model branching ratio of (8.4±1.0)×10−11. Two signal candidates are observed with an expected background of 1.5 events. Combined with the result of a similar analysis conducted by NA62 on a smaller data set recorded in 2016, the collaboration now reports an upper limit of 1.78×10−10 for the K+→π+Îœ Ì„Îœ branching ratio at 90% CL. This, together with the corresponding 68% CL measurement of (0.48+0.72−0.48)×10−10, are currently the most precise results worldwide, and are able to constrain some New Physics models that predict large enhancements still allowed by previous measurements

    Prediction of specific gravity of Afghan coal based on conventional coal properties by stepwise regression and random forest

    No full text
    Coal can be considered as the main fuel for electricity generation in Afghanistan. However, there is a quite limited data available about the overall quality, distribution, and character of coals in Afghanistan. Specific gravity (S.G) of coal as a key factor can be used for the estimation of potential tonnage production and be a fundamental parameter for the selection of coal washery process method. However, there is no investigation which comprehensively explores relationships between S.G and coal properties. In this investigation, the potential of S.G prediction based on conventional properties for Afghan coal samples was explored by stepwise regression and random forest. Pearson correlation (r) and variable importance measurement (VIM) of random forest (RF) were applied to select the most effective variables among conventional parameters for the S.G prediction. Results of VIM indicated that ash and carbon content of coal samples had the highest importance for the S.G prediction. Stepwise regression and RF models were developed based on these two coal variables. Testing the generated models indicated that S.G of Afghan coals can quite accurately predict by these models (R2 &gt; 0.90). Modeling outcomes showed that the highest S.G (S.G &gt; 2) for Afghan coal occurred when ash was higher than 40% and carbon was lower than 30%.Validerad;2023;NivÄ 2;2023-06-30 (joosat);Licens fulltext: CC BY-NC-ND License</p

    Tajik Basin and Southwestern Tian Shan, Northwestern India-Asia Collision Zone: 1. Structure, Kinematics, and Salt Tectonics in the Tajik Fold-and-Thrust Belt of the Western Foreland of the Pamir

    No full text
    International audienceSurface, seismic, and borehole data characterize the Neogene-Recent Tajik fold-and-thrust belt of the Tajik basin. The basin experienced little sub-detachment basement deformation, acting as a rigid foreland plate during the Pamir orogeny. The Tajik fold-and-thrust belt contains variable thinskinned structural styles, changing along and across strike as a function of the thickness and facies of Upper Jurassic evaporites, which constitute the basal detachment, and the influence of the surrounding thickskinned belts. The southern Tajik fold-and-thrust belt shows regularly spaced, salt-cored, thrusted detachment anticlines that transition northward into imbricated thrust sheets grouped in oppositely verging stacks facing each other across a common footwall syncline. The width of the fold-and-thrust belt decreases northeastward accommodated by the Ilyak fault, a lateral ramp developed over a seismically active dextral basement fault. The southeastern Tajik fold-and-thrust belt contains massive subaerial salt sheets, formed by squeezing of preexisting salt diapirs. The salt-tectonic domain originates from a local depocenter within the Late Jurassic Amu Darya-Tajik evaporitic basin. Serial cross sections, integrating the structural geometries, yielded minimum thinskinned shortening oriented at~90°to the India-Asia convergence direction, increasing from~93 km in the south to~148 km in the center, and dropping tĂ” 22 km in the northeast; total shortening-including the foreland buttress-is ≄170 km. Most of the shortening in the central-southern Tajik fold-and-thrust belt occurred by hinterland-vergent, high-displacement back thrusts. The Pamir played a dominant role in the transfer of shortening to the sedimentary infill of the Tajik basin with the Tian Shan acting as a semi-passive buttress

    First results of the CAST-RADES haloscope search for axions at 34.67 mu eV

    No full text
    We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 mu eV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g(a gamma) greater than or similar to 4 x 10(-13) GeV-1 over a mass range of 34.6738 mu eV < m(a)< 34.6771 mu eV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 mu eV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities
    corecore