346 research outputs found

    Analyzing hydration differences in cocrystal polymorphs: high-resolution X-ray investigation of caffeine-glutaric acid cocrystals

    Get PDF
    Two polymorphic forms of caffeine (CAF)–glutaric acid (GLU) cocrystals have been studied via high-resolution X-ray crystallography and Bader’s quantum theory of atoms in molecules (QTAIM). For both the monoclinic, 1, and triclinic, 2, systems the experimental charge density distributions of the 1:1 ratio of CAF and GLU polymorphs have been determined and compared. Previous studies have determined that 1 is less stable than 2, in relative humidity (RH) testing. A topological analysis of the electron density distribution (EDD) revealed little difference between the two polymorph internal systems. The packing densities (0.76 vs 0.74) and lattice energies (−101.1 vs −107.1 kJ mol–1) of 1 and 2, respectively, are nearly equivalent, implying that the differences in hygroscopicity between the two polymorphs are not due to crystal lattice porosity or stability. A topological analysis of the number and strength of hydrogen bonds for 1 and 2 revealed nine hydrogen bonds in both polymorphs. “Classical” (O–H···X) hydrogen bonds were similarly present in both polymorphs, stabilizing the cocrystals. However, the sum of the stability produced from the “nonclassical” (C–H···X) bonds is higher in 2: −27.6 vs −38.2 kJ mol–1 for 1 and 2, respectively. One of the nine hydrogen bonds in 1 and 2 varies from the others, caused by the torsional rotation of the aliphatic carbon chain in GLU. This bond is critical for packing stabilization, creating a parallelogram-like packing arrangement in 2 in comparison to ribboning in 1. A Hirshfeld surface analysis found that the percentages of O–H···X hydrogen bonds were nearly identical in 1 and 2 (23.9% vs 22.1%); however, the H···H contacts were higher in 2 (61.4% vs 65.8% for 1 and 2, respectively), suggesting that more hydrogen-based contacts require competitive displacement by water in the hydration of 2 in comparison to 1. Additionally, a stabilizing aromatic cycle stack between CAF molecules is present in 2 due to the varied parallelogram packing arrangement, which was absent in 1; this provided ∼11.3 kJ mol–1 of stability to the system of 2. The solid-state entropies and molecular dipole moments (MDMs) of 1 and 2 supported the relative stability of the individual polymorphs, with 1 having a higher entropy and dipole moment in comparison to 2 (123.2 vs 112.8 J K–1 mol–1 and 7.45 and 4.93 D for 1 and 2, respectively), implying that it has the potential to hydrate more rapidly. These findings are in good agreement with previous experimental RH stability studies, giving further insight into the information gained from thermally averaged ground-state crystal electron density data

    Impact of the Food Additive Titanium Dioxide (E171) on Gut Microbiota-Host Interaction

    Get PDF
    The interaction between gut microbiota and host plays a central role in health. Dysbiosis, detrimental changes in gut microbiota and inflammation have been reported in non-communicable diseases. While diet has a profound impact on gut microbiota composition and function, the role of food additives such as titanium dioxide (TiO2), prevalent in processed food, is less established. In this project, we investigated the impact of food grade TiO2 on gut microbiota of mice when orally administered via drinking water. While TiO2 had minimal impact on the composition of the microbiota in the small intestine and colon, we found that TiO2 treatment could alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that TiO2 significantly impacts gut homeostasis. These changes were associated with colonic inflammation, as shown by decreased crypt length, infiltration of CD8+ T cells, increased macrophages as well as increased expression of inflammatory cytokines. These findings collectively show that TiO2 is not inert, but rather impairs gut homeostasis which may in turn prime the host for disease development

    Validation of the Aura Microwave Limb Sounder Temperature and Geopotential Height Measurements

    Get PDF
    Global satellite observations of temperature and geopotential height (GPH) from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed. The precision, resolution, and accuracy of the data produced by the MLS version 2.2 processing algorithms are quantified, and recommendations for data screening are made. Temperature precision is 1 K or better from 316 hPa to 3.16 hPa, degrading to ∼3 K at 0.001 hPa. The vertical resolution is 3 km at 31.6 hPa, degrading to 6 km at 316 hPa and to ∼13 km at 0.001 hPa. Comparisons with analyses (Goddard Earth Observing System version 5.0.1 (GEOS-5), European Centre for Medium-range Weather Forecasts (ECMWF), Met Office (MetO)) and other observations (CHAllenging Minisatellite Payload (CHAMP), Atmospheric Infrared Sounder/Advanced Microwave Sounder Unit (AIRS/AMSU), Sounding of the Atmosphere using Broadband Radiometry (SABER), Halogen Occultation Experiment (HALOE), Atmospheric Chemistry Experiment (ACE), radiosondes) indicate that MLS temperature has persistent, pressure-dependent biases which are between −2.5 K and +1 K between 316 hPa and 10 hPa. The 100-hPa MLS v2.2 GPH surface has a bias of ∼150 m relative to the GEOS-5 values. These biases are compared to modeled systematic uncertainties. GPH biases relative to correlative measurements generally increase with height owing to an overall cold bias in MLS temperature relative to correlative temperature measurements in the upper stratosphere and mesosphere

    BILBY:A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy

    Get PDF
    Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by which gravitational-wave data is used to infer the sources' astrophysical properties. We introduce a user-friendly Bayesian inference library for gravitational-wave astronomy, Bilby. This Python code provides expert-level parameter estimation infrastructure with straightforward syntax and tools that facilitate use by beginners. It allows users to perform accurate and reliable gravitational-wave parameter estimation on both real, freely available data from LIGO/Virgo and simulated data. We provide a suite of examples for the analysis of compact binary mergers and other types of signal models, including supernovae and the remnants of binary neutron star mergers. These examples illustrate how to change the signal model, implement new likelihood functions, and add new detectors. Bilby has additional functionality to do population studies using hierarchical Bayesian modeling. We provide an example in which we infer the shape of the black hole mass distribution from an ensemble of observations of binary black hole mergers

    Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

    Get PDF
    Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    corecore