156 research outputs found

    Hydrological controls on denitrification in riparian ecosystems

    No full text
    International audienceNitrous oxide fluxes and denitrification rates were measured in situ over a year at a riparian site in the UK. An exponential relationship was found between denitrification rates and soil moisture, with a sharp increase in denitrification rate at a water-filled pore space of 60?80%. Similar relationships were found in other studies compiled for comparison. The present study is unique in measuring denitrification in an "intact" ecosystem in the field, rather than in cores in the field or the lab. The exponential relationship between denitrification rate and soil moisture, with a "threshold" at 60?80% water-filled pore space (20?40% gravimetric moisture), has proven to be comparable across a wide range of ecosystems, treatments and study conditions. Whereas moisture content determines the potential for denitrification, the absolute rate of denitrification is determined by available nitrate (NO3-), dissolved organic carbon and temperature. As a first approximation, denitrification rates can be simply modelled by using a general exponential relationship between denitrification potential and water-filled pore space (or volumetric/gravimetric water content) multiplied by a constant value determined by the nitrogen status of the site. As such, it is recommended that the current relationship used in INCA to relate denitrification to soil moisture be amended to an exponential form, with a threshold of approximately 70% for the onset of denitrification. Keywords: nitrous oxide, denitrification, soil moisture, nitrogen, eutrophication, riparia

    Nitrous oxide emission from a range of land uses across Europe

    No full text
    International audienceThe results of a literature study examining quantitative estimates of N2O emission rates are presented for a range of land-uses across Europe. The analysis shows that the highest N2O emission rates are for agricultural lands compared to forests and grasslands. The main factors regulating these rates are available mineral nitrogen, soil temperature, soil water content and the available labile organic compounds. These controls operate across different time-scales, all must exceed a certain threshold for N2O emission to occur. The results support the need for an emission factor function of land-use and climate within models describing nitrogen dynamics in catchments. This would allow the assessment of the net N2O emission within catchments in terms of current levels and potential changes associated with climate variability, climate change and land use change. Keywords: nitrous oxide, soil water content, inorganic N, soil temperature, ecosystems, land-use management, soil typ

    Identification of potential “Remedies” for Air Pollution (nitrogen) Impacts on Designated Sites (RAPIDS)

    Get PDF
    Atmospheric nitrogen (N) deposition is a significant threat to semi-natural habitats and species in the UK, resulting in on-going erosion of habitat quality and declines in many species of high conservation value. The project focused on impacts and remedies for designated conservation sites, especially Natura 2000 sites protected under the EU Habitats Directive. However, the approach and certainly the measures could be equally applied to other areas of high conservation value. Evidence was drawn together to develop a framework for identifying key N threats at individual sites as a basis to target mitigation options in the context of potential legislative, voluntary and financial instruments

    What is the most ecologically-meaningful metric of nitrogen deposition?

    Get PDF
    Nitrogen (N) deposition poses a severe risk to global terrestrial ecosystems, and managing this threat is an important focus for air pollution science and policy. To understand and manage the impacts of N deposition, we need metrics which accurately reflect N deposition pressure on the environment, and are responsive to changes in both N deposition and its impacts over time. In the UK, the metric typically used is a measure of total N deposition over 1–3 years, despite evidence that N accumulates in many ecosystems and impacts from low-level exposure can take considerable time to develop. Improvements in N deposition modelling now allow the development of metrics which incorporate the long-term history of pollution, as well as current exposure. Here we test the potential of alternative N deposition metrics to explain vegetation compositional variability in British semi-natural habitats. We assembled 36 individual datasets representing 48,332 occurrence records in 5479 quadrats from 1683 sites, and used redundancy analyses to test the explanatory power of 33 alternative N metrics based on national pollutant deposition models. We find convincing evidence for N deposition impacts across datasets and habitats, even when accounting for other large-scale drivers of vegetation change. Metrics that incorporate long-term N deposition trajectories consistently explain greater compositional variance than 1–3 year N deposition. There is considerable variability in results across habitats and between similar metrics, but overall we propose that a thirty-year moving window of cumulative deposition is optimal to represent impacts on plant communities for application in science, policy and management

    Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials

    Get PDF
    The effects of atmospheric nitrogen deposition (Ndep_{dep}) on carbon (C) sequestration in forests have often been assessed by relating differences in productivity to spatial variations of Ndep_{dep} across a large geographic domain. These correlations generally suffer from covariation of other confounding variables related to climate and other growth-limiting factors, as well as large uncertainties in total (dry+wet) reactive nitrogen (Nr_{r}) deposition.We propose a methodology for untangling the effects of Ndep_{dep} from those of meteorological variables, soil water retention capacity and stand age, using a mechanistic forest growth model in combination with eddy covariance CO2_{2} exchange fluxes from a Europe-wide network of 22 forest flux towers. Total Nr_{r} deposition rates were estimated from local measurements as far as possible. The forest data were compared with data from natural or semi-natural, non-woody vegetation sites. The response of forest net ecosystem productivity to nitrogen deposition (dNEP= dNdep_{dep}) was estimated after accounting for the effects on gross primary productivity (GPP) of the co-correlates by means of a meta-modelling standardization procedure, which resulted in a reduction by a factor of about 2 of the uncorrected, apparent dGPP/dNdep_{dep} value. This model-enhanced analysis of the C and Ndep_{dep} flux observations at the scale of the European network suggests a mean overall dNEP/dNdep_{dep} response of forest lifetime C sequestration to Ndep_{dep} of the order of 40–50 g C per g N, which is slightly larger but not significantly different from the range of estimates published in the most recent reviews. Importantly, patterns of gross primary and net ecosystem productivity versus Ndep_{dep} were non-linear, with no further growth responses at high Ndep_{dep} levels (Ndep_{dep} >2.5–3 gNm2^{-2} yr1^{-1}) but accompanied by increasingly large ecosystem N losses by leaching and gaseous emissions. The reduced increase in productivity per unit N deposited at high Ndep_{dep} levels implies that the forecast increased Nr_{r} emissions and increased Ndep levels in large areas of Asia may not positively impact the continent’s forest CO2_{2} sink. The large level of unexplained variability in observed carbon sequestration efficiency (CSE) across sites further adds to the uncertainty in the dC/dN response

    Dise?o de una estrategia did?ctica para optimizar el uso de las tic en el ?rea empresarial grado decimo de la Instituci?n Educativa T?cnica Empresarial Alberto Castilla de la ciudad de Ibagu?

    Get PDF
    216 p. Recurso Electr?nicoAs? como la sociedad se ha ido transformando, la educaci?n tambi?n ha presentado algunos cambios en cuanto a la forma de ense?ar y de ver el alumno, es all? donde las tecnolog?as de la informaci?n y la comunicaci?n dan un aporte significativo en la mejora de los procesos educativos, ya que aportan herramientas que contribuyen en pro de la calidad educativa siempre y cuando se utilicen de una forma adecuada, lo que conlleva a realizar una investigaci?n que tenga como objetivo principal el dise?o de una estrategia did?ctica para optimizar el uso de estas tecnolog?as en el ?rea empresarial del grado 10? de la Instituci?n Educativa T?cnica Empresarial Alberto Castilla de Ibagu?. En cuanto al sustento te?rico, la investigaci?n se fundamenta en Feo, (2010); D?az Barriga y Hern?ndez, (2002) y D?az, (2013) para la categor?a de Estrategia Did?ctica y Secuencia Did?ctica, respectivamente. La segunda categor?a est? relacionada con el uso pedag?gico y optimizaci?n de las TIC, aqu? se apoya en Ram?rez, (2006) Ramas, (2006) y Avalos, (2016). La tercera y ?ltima categor?a estudiada es el ?rea empresarial, la cual se fundamenta en las normas y leyes que rigen la educaci?n Media T?cnica en Colombia, Ley 115 de 1994, Ley 1014 de 2006, Gu?as 39 y 21 del Ministerio de Educaci?n Nacional y Plan Nacional Decenal de Educaci?n 2016-2026. Para llevar a cabo la investigaci?n se ha optado por un enfoque mixto, con predominancia cualitativa, y alcance descriptivo ? explicativo, considerando como mejor dise?o de investigaci?n la Investigaci?n acci?n; esta decisi?n se sustenta en los objetivos y caracter?sticas de la misma. En cuanto a las t?cnicas para recolecci?n y an?lisis de la informaci?n se hace uso de la encuesta a docentes y estudiantes, y la entrevista mediante un grupo focal a estudiantes. Los datos obtenidos a trav?s de la encuesta con preguntas cerradas fueron analizados con el programa estad?stico Statistical Package for the Social Sciences (SPSS) y la de preguntas abiertas con el programa para an?lisis de datos cualitativos Atlas ti. Palabras claves: Estrategia did?ctica, TIC en educaci?n, ?rea empresarial.As society has been transformed, education has also presented some changes in the way of teaching and seeing the student, it is there where information and communication technologies give a significant contribution in the improvement of processes educational, as they provide tools that contribute to educational quality as long as they are used in an appropriate manner, which leads to carry out research that has as main objective the design of a didactic strategy to optimize the use of these technologies in the business area of the 10th grade of the Alberto Castilla Industrial Technical Education Institution of Ibagu?. With regard to theoretical sustenance, the research is based on Feo, (2010), D?az Barriga and Hern?ndez, (2002) and D?az, (2013) for the category of Teaching Strategy and Didactic Sequence, respectively. The second category is related to the pedagogical use and optimization of ICT, here it is supported by Ram?rez, (2006) Ramas, (2006) and Avalos, (2016). The third and last category studied is the business area, which is based on the norms and laws that govern technical media education in Colombia, Law 115 of 1994, Law 1014 of 2006, Guides 39 and 21 of the Ministerio de Eduaci?n Nacional and the National Ten-Year Plan. Education 2016-2026. To carry out the research, a mixed approach has been chosen, with a qualitative predominance, and descriptive - explanatory scope, considering as the best research design the action research. This decision is based on the objectives and characteristics of it. Regarding the techniques for collecting and analyzing the information, the survey of teachers and students is used, and the interview with a focus group of students. The data obtained through the survey with closed questions were analyzed with the statistical program Statistical Package for the Social Sciences (SPSS) and the open questions with the Atlas ti qualitative data analysis program. Keywords: Didactic strategy, ICT in education, business area

    Disparities between plant community responses to nitrogen deposition and critical loads in UK semi-natural habitats

    Get PDF
    Empirical critical loads are widely used to quantify and manage the ecological impacts of reactive nitrogen (N) deposition. Critical load values aim to identify a level of N deposition below which significant harmful effects do not occur according to present knowledge. Critical loads have been primarily based on experiments, but these are few in number and have well-known limitations, so there is a strong imperative to test and validate values with other forms of evidence. We assembled data on the spatial variability in vegetation communities in the United Kingdom and used Threshold Indicator Taxa Analyses (TITAN) to investigate linkages between species changes and modelled current and cumulative N deposition. Our analyses focused on five datasets: acid grasslands, alpine habitats, coastal fixed dunes, dune slacks and wet grasslands. In four of these habitats there was evidence for a significant decline in the cover of at least one species (a ‘species-loss change-point’) occurring below the critical load, and often at very low levels of N deposition. In all of the habitats there was evidence for clustering of many individual species-loss change-points, implying a community change-point analogous to an ecological threshold. Three of these community change-points occurred below the critical load and the remaining two overlapped with the critical load range. Studies using similar approaches are now increasingly common, with similar results. Across 19 similar analyses there has been evidence for plant species loss change-points below the critical load in 18 analyses, and community-level species loss change-points below the critical load in 13 analyses. None of these analyses has shown community change-points above the critical load. Field data increasingly suggest that many European critical loads are too high to confidently prevent loss of sensitive species

    Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling

    Get PDF
    The impact of atmospheric reactive nitrogen (Nr_{r}) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr_{r} deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr_{r} deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr_{r} inputs and losses, these data were also combined with in situ flux measurements of NO, N2_{2}O and CH4_{4} fluxes; soil NO3_{3}̅ leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm2^{-2} yr1^{-1} at total wet+dry inorganic Nr_{r} deposition rates (Ndep_{dep}) of 0.3 to 4.3 gNm2^{-2} yr1^{-1} and from -4 to 361 g Cm2^{-2} yr1^{-1} at Ndep_{dep} rates of 0.1 to 3.1 gNm2^{-2} yr1^{-1} in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2_{2} exchange, while CH4_{4} and N2_{2}O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep_{dep} where Nr_{r} leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2_{2} losses by denitrification. Nitrogen losses in the form of NO, N2_{2}O and especially NO3_{3}̅ were on average 27%(range 6 %–54 %) of Ndep_{dep} at sites with Ndep_{dep} 3 gNm2^{-2} yr1^{-1}. Such large levels of Nr_{r} loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr_{r} deposition up to 2–2.5 gNm2^{-2} yr1^{-1}, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated Ndep_{dep} levels (> 2.5 gNm2^{-2} yr1^{-1}), where inorganic Nr_{r} losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep_{dep} levels was partly the result of geographical cross-correlations between Ndep_{dep} and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep_{dep}

    Peatland Initiation, Carbon Accumulation, and 2 ka Depth in the James Bay Lowland and Adjacent Regions

    Get PDF
    Copyright © 2014 University of Colorado at Boulder, Institute of Arctic and Alpine ResearchPeatlands surrounding Hudson and James Bays form the second largest peatland complex in the world and contain major stores of soil carbon (C). This study utilized a transect of eight ombrotrophic peat cores from remote regions of central and northern Ontario to quantify the magnitude and rate of C accumulation since peatland initiation and for the past 2000 calendar years before present (2 ka). These new data were supplemented by 17 millennially resolved chronologies from a literature review covering the Boreal Shield, Hudson Plains, and Taiga Shield bordering Hudson and James Bays. Peatlands initiated in central and northern Ontario by 7.8 ka following deglaciation and isostatic emergence of northern areas to above sea level. Total C accumulated since inception averaged 109.7 ± (std. dev.) 36.2 kg C m–2. Approximately 40% of total soil C has accumulated since 2 ka at an average apparent rate of 20.2 ± 6.9 g C m–2 yr–1. The 2 ka depths correlate significantly and positively with modern gridded climate estimates for mean annual precipitation, mean annual air temperature, growing degree-days > 0 °C, and photosynthetically active radiation integrated over days > 0 °C. There are significantly shallower depths in permafrost peatlands. Vertical peat accumulation was likely constrained by temperature, growing season length, and photosynthetically active radiation over the last 2 ka in the Hudson Bay Lowlands and surrounding regions.US National Science Foundatio
    corecore