36 research outputs found

    Twisted scroll waves organize Dictyostelium mucoroides slugs

    Get PDF
    Cellular slime moulds (Dictyosteloids) are characterised by at least two different modes of slug migration. Most species, e.g. Dictyostelium mucoroides, produce a stalk continuously during slug migration, while a few species, e.g. Dictyostelium discoideum are characterised by stalk-less slug migration and only produce a stalk upon culmination. Experiments on D. discoideum and theoretical model calculations have shown that D. discoideum slugs are organized by a cAMP scroll wave in the tip which produces planar waves in the back. These waves guide cell movement in slugs: spiralling in the tip and forward movement parallel to the slug axis in the back. Simple changes in model parameters can lead to the formation of a twisted scroll wave which extends throughout the slug. In order to investigate whether such twisted scroll waves occur naturally we have analysed the movement of fluorescently labelled single cells in migrating D. mucoroides slugs. The results show that cells in the prespore zone of D. mucoroides slugs move in a spiral path. Although the velocity of single cells in D. mucoroides is faster than in D. discoideum, the net forward component of their movement is less due to their spiral trajectories. As a result D. mucoroides slugs move more slowly than D. discoideum slugs. The entire D. mucoroides slug also describes a spiralling path leaving corkscrew shaped stalks behind. Based on these observations we propose that cell movement in D. mucoroides slugs is controlled by a propagating twisted scroll wave of cAMP which extends throughout the length of the slug

    Deficiency of Cks1 leads to learning and long-term memory defects and p27 dependentformation of neuronal cofilin aggregates

    Get PDF
    In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1−/−) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits. Furthermore, there was neuronal accumulation of cofilin-actin rods or cofilin aggregates, which are associated with defective dendritic spine maturation and synaptic loss. We further demonstrated that it was the increased p27 level that activated cofilin by suppressing the RhoA kinase-mediated inhibitory phosphorylation of cofilin, resulting in the formation of cofilin aggregates in the Cks1−/− neuronal cells. Consistent with reports that the peptidyl-prolyl-isomerase PIN1 competes with CKS1 for p27 binding, we found that inhibition of PIN1 diminished the formation of cofilin aggregates through decreasing p27 levels, thereby activating RhoA and increasing cofilin phosphorylation. Our results revealed that CKS1 is involved in normal glutamatergic synapse development and dendritic spine maturation in adult hippocampus through modulating p27 stability

    The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

    Get PDF
    Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat

    Digital single-operator pancreatoscopy for the treatment of symptomatic pancreatic duct stones: a prospective multicenter cohort trial

    Full text link
    BACKGROUND  Digital single-operator pancreatoscopy (DSOP)-guided lithotripsy is a novel treatment modality for pancreatic endotherapy, with demonstrated technical success in retrospective series of between 88 % and 100 %. The aim of this prospective multicenter trial was to systematically evaluate DSOP in patients with chronic pancreatitis and symptomatic pancreatic duct stones. METHODS  Patients with symptomatic chronic pancreatitis and three or fewer stones ≥ 5mm in the main pancreatic duct (MPD) of the pancreatic head or body were included. The primary end point was complete stone clearance (CSC) in three or fewer treatment sessions with DSOP. Current guidelines recommend extracorporeal shock wave lithotripsy (ESWL) for MPD stones > 5 mm. A performance goal was developed to show that the CSC rate of MPD stones using DSOP was above what has been previously reported for ESWL. Secondary end points were pain relief measured with the Izbicki pain score (IPS), number of interventions, and serious adverse events (SAEs). RESULTS  40 chronic pancreatitis patients were included. CSC was achieved in 90 % of patients (36/40) on intention-to-treat analysis, after a mean (SD) of 1.36 (0.64) interventions (53 procedures in total). The mean (SD) baseline IPS decreased from 55.3 (46.2) to 10.9 (18.3). Overall pain relief was achieved in 82.4 % (28/34) after 6 months of follow-up, with complete pain relief in 61.8 % (21/34) and partial pain relief in 20.6 % (7/34). SAEs occurred in 12.5 % of patients (5/40), with all treated conservatively. CONCLUSION  DSOP-guided endotherapy is effective and safe for the treatment of symptomatic MPD stones in highly selected patients with chronic pancreatitis. It significantly reduces pain and could be considered as an alternative to standard ERCP techniques for MPD stone treatment in these patients

    A standard protocol for reporting species distribution models

    Get PDF
    Species distribution models (SDMs) constitute the most common class of models across ecology, evolution and conservation. The advent of ready-to-use software packages and increasing availability of digital geoinformation have considerably assisted the application of SDMs in the past decade, greatly enabling their broader use for informing conservation and management, and for quantifying impacts from global change. However, models must be fit for purpose, with all important aspects of their development and applications properly considered. Despite the widespread use of SDMs, standardisation and documentation of modelling protocols remain limited, which makes it hard to assess whether development steps are appropriate for end use. To address these issues, we propose a standard protocol for reporting SDMs, with an emphasis on describing how a study's objective is achieved through a series of modeling decisions. We call this the ODMAP (Overview, Data, Model, Assessment and Prediction) protocol, as its components reflect the main steps involved in building SDMs and other empirically-based biodiversity models. The ODMAP protocol serves two main purposes. First, it provides a checklist for authors, detailing key steps for model building and analyses, and thus represents a quick guide and generic workflow for modern SDMs. Second, it introduces a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitating peer review and expert evaluation of model quality, as well as meta-analyses. We detail all elements of ODMAP, and explain how it can be used for different model objectives and applications, and how it complements efforts to store associated metadata and define modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide an interactive web-based application to facilitate its use. We plan to advance ODMAP by encouraging its further refinement and adoption by the scientific community

    Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics

    Get PDF
    Liquid-liquid phase separation (LLPS) of RNA-binding proteins plays an important role in the formation of multiple membrane-less organelles involved in RNA metabolism, including stress granules. Defects in stress granule homeostasis constitute a cornerstone of ALS/FTLD pathogenesis. Polar residues (tyrosine and glutamine) have been previously demonstrated to be critical for phase separation of ALS-linked stress granule proteins. We now identify an active role for arginine-rich domains in these phase separations. Moreover, arginine-rich dipeptide repeats (DPRs) derived from C9orf72 hexanucleotide repeat expansions similarly undergo LLPS and induce phase separation of a large set of proteins involved in RNA and stress granule metabolism. Expression of arginine-rich DPRs in cells induced spontaneous stress granule assembly that required both eIF2α phosphorylation and G3BP. Together with recent reports showing that DPRs affect nucleocytoplasmic transport, our results point to an important role for arginine-rich DPRs in the pathogenesis of C9orf72 ALS/FTLD

    Neuronal Control of Metabolism through Nutrient-Dependent Modulation of Tracheal Branching

    Get PDF
    SummaryDuring adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives—rather than responds to—metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture

    IntensityCheck - The light measuring app for microscope performance checks and consistent fluorescence imaging.

    No full text
    Quantitative fluorescence imaging is an essential tool in biomedical research. It requires consistent and repeatable conditions such as constant sample illumination. Even on a confocal microscope this can usually only be achieved by using an external laser power meter. By combining low-cost wireless Arduino based light sensors with an easy to use Android smartphone app we provide microscope users with a simple but powerful tool to maintain sample illumination for quantitative imaging, for tracking the intensity, stability and alignment of the light sources and for comparing microscope performance
    corecore