153 research outputs found

    Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation IV: Background Simulations using GEANT-4 Toolkit

    Full text link
    Hard X-ray detectors in space are prone to background signals due to the ubiquitous cosmic rays and cosmic diffuse background radiation that continuously bombards the satellites which carry the detectors. In general, the background intensity depends on the space environment as well as the material surrounding the detectors. Understanding the behavior of the background noise in the detector is very important to extract the precise source information from the detector data. In this paper, we carry out Monte Carlo simulations using the GEANT-4 toolkit to estimate the prompt background noise measured with the detectors of the RT-2 Experiment onboard the CORONAS-PHOTON satellite.Comment: 21 pages, 10 figures, Accepted for publication in Experimental Astronomy (in press

    Characterization of a bacterial collar and rhizome rot of banana (Musa paradisiaca) caused by strains of Erwinia chrysanthemi pv. paradisiaca

    Get PDF
    A serious collar and rhizome rot disease of banana was observed in the north region of Maharashtra state in post rainy season. The disease was caused by the bacterial strains of Erwinia chrysanthemi pv. paradisiaca identified and characterized by morphological, physiological, biochemical and pathogenicity tests. The infection occurred on new banana plantation of one month old in poorly drained soil. In post rainy season, banana plantations of 8 to 10 weeks were found severely infected. E. chrysanthemi pv. paradisiaca produced soft rot symptom onhealthy banana rhizomes within three weeks. Two strains were isolated from the collar and rhizome rotted diseased samples which were similar in morphological, physiological and biochemical characteristics, however they differed in the virulence aggressiveness to cause the disease in banana. Strain II caused soft rot symptoms within 19 days, however strain I produced it within 23 days of inoculation with suspension of 3×108 CFU ml-1. The result of this study revealed that strain II was more aggressive as compared to strain I of E. chrysanthemi pv. paradisiaca

    Thermo-fluidic Transport Process in a Novel M-shaped Cavity Packed with Non-Darcian Porous Medium and Hybrid Nanofluid: Application of Artificial Neural Network (ANN)

    Get PDF
    In this work, an attempt has been made to explore numerically the thermo-fluidic transport process in a novel M-shaped enclosure filled with permeable material along with Al2O3-Cu hybrid nanoparticles suspended in water under the influence of a horizontal magnetizing field. To exercise the influence of geometric parameters, a classical trapezoidal cavity is modified with an inverted triangle at the top to construct an M-shaped cavity. The cavity is heated isothermally from the bottom and cooled from the top, whereas the inclined sidewalls are insulated. The role of geometric parameters on the thermal performance is scrutinized thoroughly by changing the sidewall inclination, number, and height of the top inverted triangular undulation under similar boundary conditions. The governing equations transformed into dimensionless form are solved by using a computing code written in the finite volume approach. The analysis is conducted by considering a wide range of parametric influences like sidewall angles (γ), number (n), and height (δ) of the top triangular undulations, modified Rayleigh number (Ram), Darcy number (Da), Hartmann number (Ha), and hybrid nanoparticle concentrations (φ). Furthermore, the artificial neural network (ANN) technique is implemented and tested to predict the overall thermal behavior of the novel cavity to predict new cases. The results revealed that the design of sidewall inclination (γ) is an important parameter for modulating the thermo-flow physics. The M-shaped cavity (compared to trapezoidal) reveals either a rise or drop in the fluid circulation strength depending upon the magnitude of δ, but the heat transfer rate always increases due to an increase in the cooling length. The heat transfer increment is ∼61.01% as δ increases. Single undulation with higher depth is the optimum choice for achieving improved heat transfer (which may go up to ∼355.75% for δ = 0.5 and γ  = 45°). A decrease in Da or Ha causes a drop in the flow strength, which consequently leads to a drop in the heat transfer rate. Furthermore, the concepts of ANN will help researchers predict the behavior for such complicated cavity shapes with a multiphysics approach. This will save efforts as well as computing time for exploring the thermal behavior of any range of a dataset

    Naphthoquinone-mediated inhibition of lysine acetyltransferase KAT3B/p300, basis for non-toxic inhibitor synthesis

    Get PDF
    Hydroxynaphthoquinone-based inhibitors of the lysine acetyltransferase KAT3B (p300), such as plumbagin, are relatively toxic. Here, we report that free thiol reactivity and redox cycling properties greatly contribute to the toxicity of plumbagin. A reactive 3rd position in the naphthoquinone derivatives is essential for thiol reactivity and enhances redox cycling. Using this clue, we synthesized PTK1, harboring a methyl substitution at the 3rd position of plumbagin. This molecule loses its thiol reactivity completely and its redox cycling ability to a lesser extent. Mechanistically, non-competitive, reversible binding of the inhibitor to the lysine acetyltransferase (KAT) domain of p300 is largely responsible for the acetyltransferase inhibition. Remarkably, the modified inhibitor PTK1 was a nearly non-toxic inhibitor of p300. The present report elucidates the mechanism of acetyltransferase activity inhibition by 1,4-naphthoquinones, which involves redox cycling and nucleophilic adduct formation, and it suggests possible routes of synthesis of the non-toxic inhibitor

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Search for top squark production in fully hadronic final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb(-1). The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeVare established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.Peer reviewe

    Measurement of the W gamma Production Cross Section in Proton-Proton Collisions at root s=13 TeV and Constraints on Effective Field Theory Coefficients

    Get PDF
    A fiducial cross section for W gamma production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb(-1) of data collected using the CMS detector at the LHC. The W -> e nu and mu nu decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.Peer reviewe
    corecore