521 research outputs found

    UTILIZATION AND INTERPRETATION OF HYDROLOGIC DATA: WITH SELECTED EXAMPLES FROM NEW HAMPSHIRE

    Get PDF

    Puromycin Sensitivity of Ribosomal Label after Incorporation of 14C-Labelled Amino Acids into Isolated Mitochondria from Neurospora crassa

    Get PDF
    Radioactive amino acids were incorporated into isolated mitochondria from Neurospora crassa. Then the mitochondrial ribosomes were isolated and submitted to density gradient centrifugation. A preferential labelling of polysomes was observed. However, when the mitochondrial suspension was treated with puromycin after amino acid incorporation, no radioactivity could be detected in either the monosomes or the polysomes. The conclusion is drawn that isolated mitochondria under these conditions do not incorporate significant amounts of amino acids into proteins of their ribosomes

    Interaction Between a Fossorial Rodent (The Pocket Gopher, Thomomys Bottae) and a Desert Plant Community

    Get PDF

    Results of Osteochondral Autologous Transplantation in the Knee

    Get PDF
    Repair of full thickness defects of articular cartilage in the knee is difficult but important to prevent progression to osteoarthritis. The purpose of this retrospective study was to evaluate the clinical results of Osteochondral Autograft Transplant System (OATS) treatment for articular defects of the knee

    The solute transport and binding profile of a novel nucleobase cation symporter 2 from the honeybee pathogen Paenibacillus larvae

    Get PDF
    Here, we report that a novel nucleobase cation symporter 2 encoded in the genome of the honeybee bacterial pathogen Paenibacillus larvae reveals high levels of amino acid sequence similarity to the Escherichia coli and Bacillus subtilis uric acid and xanthine transporters. This transporter is named P. larvae uric acid permease-like protein (PlUacP). Even though PlUacP displays overall amino acid sequence similarities, has common secondary structures, and shares functional motifs and functionally important amino acids with E. coli xanthine and uric acid transporters, these commonalities are insufficient to assign transport function to PlUacP. The solute transport and binding profile of PlUacP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUacP transports the purines adenine and guanine and the pyrimidine uracil. Hypoxanthine, xanthine, and cytosine are not transported by PlUacP, but, along with uric acid, bind in a competitive manner. PlUacP has strong affinity for adenine Km 7.04 ± 0.18 μm, and as with other bacterial and plant NCS2 proteins, PlUacP function is inhibited by the proton disruptor carbonyl cyanide m-chlorophenylhydrazone. The solute transport and binding profile identifies PlUacP as a novel nucleobase transporter

    The Climatic Water Balance and Topography Control Spatial Patterns of Atmospheric Demand, Soil Moisture, and Shallow Subsurface Flow

    Get PDF
    Catchment hydrometeorology and the organization of shallow subsurface flow are key drivers of active contributing areas and streamflow generation. However, understanding how the climatic water balance and complex topography contribute to these processes from hillslope to catchment scales remains difficult. We compared time series of vapor pressure deficits and soil moisture to the climatic water balance and topographic variables across six zero-order catchments in the Lubrecht Experimental Forest (Montana, USA). We then evaluated how local hydrometeorology (volumetric water content and atmospheric vapor pressure deficit) affected the spatial occurrence of shallow subsurface flow. Generalized linear mixed model analysis revealed significant, temporally stable (monthly and seasonal average) patterns of hydrometeorology that can be predicted by the topographic wetness index and the dynamic climatic water deficit (CWD = potential evapotranspiration - actual evapotranspiration). Intracatchment patterns were significantly correlated to the topographic wetness index, while intercatchment patterns were correlated to spatiotemporal variance in the CWD during each time period. Spatial patterns of shallow subsurface flow were related to the hydrometeorological conditions of the site. We observed persistent shallow subsurface flow in convergent hillslope positions, except when a catchment was positioned in locations with high CWDs (low elevations and southerly aspects). Alternatively, we observed persistent subsurface flow across all hillslope positions (even 70-m upslope from the hollow) when catchments were positioned in locations with especially low CWDs (northerly aspects and high elevations). These results highlight the importance of considering the superposition of the catchment-scale climatic water balance and hillslope-scale topography when characterizing hydrometeorology and shallow subsurface flow dynamics.USDA NIFA McIntire Stennis award [233327]; NSF grants [DEB-1457749, DEB-1457720]; NASA applied science program Wildland Fire award [NNH11ZDA001N-FIRES]; NSF EPSCoR through the Montana Institute on Ecosystems6 month embargo; published online: 19 February 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Runoff response of a small agricultural basin in the argentine Pampas considering connectivity aspects

    Get PDF
    Our manuscript analyses the surface runoff variability, and its controlling factors in a small basin with gentle slopes, at the headwaters of a flat catchment, to improve the knowledge of the hydrology of plain areas under agriculture. We study runoff, rainfall and antecedent conditions in the argentine Pampas region. We use correlations, regressions and quantitative and qualitative descriptive information of the system: erosion signs, ground cover by crops, groundwater depth data and temporal changes in the drainage network, to discuss and understand the complexity of the runoff process by frameworks to study (dis)connectivity. The analysis of 56 events evidenced a nonlinear rainfall–runoff relationship. In contrast with other works, we identified clear upper limit events, under which hydrological responses emerge, as a result of combinations of antecedent wetness, rainfall erosivity, ground cover and preferential drainage paths. We separated the nonlinear rainfall–runoff response in three linear relationships according to differences in antecedent wetness conditions. We found differences in runoff responses under wet and dry antecedent conditions, but complex responses under medium antecedent conditions. The analyses of the inputs, the structural and the functional elements of the (dis)connectivity frameworks, were key in the understanding of the temporal changes of runoff, and its complex responses. Temporal coincidences of connectivity components and their feedbacks appear to be strongly associated with the runoff dynamics. High-magnitude hydrological responses occur with complete coincidences, while partial coincidences between the components reduce connectivity and low magnitude and/or heterogeneous responses prevail. Thus, these analyses suggest that runoff is controlled by (dis)connectivity in this basin with gentle slopes. Our work contributes to the understanding of the process of surface runoff in the context of humid flatlands under agricultural land use, by the identification of the complex combinations of factors which regulate/control the (dis)connectivity that helps to interpret the nonlinearities of runoff.Fil: Ares, María Guadalupe. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; ArgentinaFil: Varni, Marcelo Raúl. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; ArgentinaFil: Chagas, Celio Ignacio. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra. Cátedra de Manejo y Conservación de Suelo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Transient Storage as a Function of Geomorphology, Discharge, and Permafrost Active Layer Conditions in Arctic Tundra Streams

    Get PDF
    Transient storage of solutes in hyporheic zones or other slow-moving stream waters plays an important role in the biogeochemical processes of streams. While numerous studies have reported a wide range of parameter values from simulations of transient storage, little field work has been done to investigate the correlations between these parameters and shifts in surface and subsurface flow conditions. In this investigation we use the stream properties of the Arctic (namely, highly varied discharges, channel morphologies, and subchannel permafrost conditions) to isolate the effects of discharge, channel morphology, and potential size of the hyporheic zone on transient storage. We repeated stream tracer experiments in five morphologically diverse tundra streams in Arctic Alaska during the thaw season (May–August) of 2004 to assess transient storage and hydrologic characteristics. We compared transient storage model parameters to discharge (Q), the Darcy-Weisbach friction factor (f), and unit stream power (ω). Across all studied streams, permafrost active layer depths (i.e., the potential extent of the hyporheic zone) increased throughout the thaw season, and discharges and velocities varied dramatically with minimum ranges of eight-fold and four-fold, respectively. In all reaches the mean storage residence time (tstor) decreased exponentially with increasing Q, but did not clearly relate to permafrost active layer depths. Furthermore, we found that modeled transient storage metrics (i.e., tstor, storage zone exchange rate (αOTIS), and hydraulic retention (Rh)) correlated better with channel hydraulic descriptors such as f and ω than they did with Q or channel slope. Our results indicate that Q is the first-order control on transient storage dynamics of these streams, and that f and ω are two relatively simple measures of channel hydraulics that may be important metrics for predicting the response of transient storage to perturbations in discharge and morphology in a given stream

    Long-term TNT and DNT contamination: 1-D modeling of natural attenuation in the vadose zone: case study, Portugal

    Get PDF
    The vadose zone of a trinitrotoluene (TNT) and dinitrotoluene (DNT) contaminated site was investigated to assess the mobility of those explosives under natural conditions. Located in the left margin of the River Tejo Basin, Portugal, the site is located on unconsolidated sediments. Wastewaters associated with the 50-year explosives production were disposed in excavated ponds, from where water would infiltrate and pollute the unsaturated and saturated parts of the local aquifers. Two boreholes were drilled to 9 m depth in such a former waste pond to investigate the contaminant's fate in the vadose zone. Sediment samples were taken every 1-2 m for analysis of the polynitroaromatics (p-NACs) and organic volatile compounds, pH, organic carbon content, cation exchange capacity and grain size analysis. The main contaminant was TNT representing >70 % of the total p-NACs concentration that peaked approximately 7 mg/kg in one borehole, even if the median in both boreholes was of similar to 1 mg/kg. DNT was 4-30 % of the total p-NACs and nitrotoluene (NT), up to 5 %. No other (volatile) organic compound was detected. The predominance of TNT as the main contaminant implies that any natural mass reduction has been inefficient to clean the site. Several 1-D model simulations of p-NACs cleaning of the vadose zone under natural conditions indicated that the most probable scenario of combined advection and partitioning will only remove TNT after 10's of years, whereas DNT and NT will hardly be removed. Such low concentrations and long times for the p-NACs removal, suggest that by now those compounds have been washed-out to a level below standard limits
    • …
    corecore