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Abstract Catchment hydrometeorology and the organization of shallow subsurface flow are key drivers
of active contributing areas and streamflow generation. However, understanding how the climatic water
balance and complex topography contribute to these processes from hillslope to catchment scales remains
difficult. We compared time series of vapor pressure deficits and soil moisture to the climatic water balance
and topographic variables across six zero‐order catchments in the Lubrecht Experimental Forest (Montana,
USA). We then evaluated how local hydrometeorology (volumetric water content and atmospheric vapor
pressure deficit) affected the spatial occurrence of shallow subsurface flow. Generalized linear mixed model
analysis revealed significant, temporally stable (monthly and seasonal average) patterns of
hydrometeorology that can be predicted by the topographic wetness index and the dynamic climatic water
deficit (CWD = potential evapotranspiration − actual evapotranspiration). Intracatchment patterns were
significantly correlated to the topographic wetness index, while intercatchment patterns were correlated to
spatiotemporal variance in the CWD during each time period. Spatial patterns of shallow subsurface flow
were related to the hydrometeorological conditions of the site. We observed persistent shallow subsurface
flow in convergent hillslope positions, except when a catchment was positioned in locations with high
CWDs (low elevations and southerly aspects). Alternatively, we observed persistent subsurface flow across
all hillslope positions (even 70‐m upslope from the hollow) when catchments were positioned in locations
with especially low CWDs (northerly aspects and high elevations). These results highlight the importance of
considering the superposition of the catchment‐scale climatic water balance and hillslope‐scale topography
when characterizing hydrometeorology and shallow subsurface flow dynamics.

1. Introduction

The dominant controls on spatial patterns of moisture in the near‐surface atmosphere and shallow
subsurface remain poorly characterized across catchment gradients in topography and the climatic water
balance. Catchments are dynamic systems, which store, transmit, and release water, but do so in spatially
and temporally heterogeneous ways (McDonnell et al., 2007; Troch et al., 2009). This dynamic response is
often related to the spatial distribution of moisture across topographic gradients and stochastic variability
(frequency and intensity) of precipitation and energy availability that lead to shallow subsurface flow
(SSF) generation (Castillo et al., 2003; Dunne & Black, 1970; Freeze, 1972; Jencso et al., 2009;
Montgomery & Dietrich, 2002; Penna et al., 2011; Zhang et al., 2011).

Hydrologic fluxes occur both within and across the soil matrix‐atmosphere continuum, intrinsically linking
the two moisture reservoirs (Brubaker & Entekhabi, 1994; Castelli et al., 1996; Delworth & Manabe, 1989;
Entekhabi et al., 1992; Entekhabi et al., 1996; Ford et al., 2015; Maxwell et al., 2007; Vivoni et al., 2007).
Therefore, the moisture availability in the atmosphere and the subsurface both contribute to the average
moisture states within hillslopes and across the catchments they compose. Moisture availability is driven
by regional climatic processes, which are subsequently mediated by topographic gradients at various spatial
and temporal scales (Carey &Woo, 2001; Maneta & Silverman, 2013; Western et al., 2004). At the catchment
scale, spatially heterogeneous partitioning of climatic inputs (water and energy) is strongly influenced by
topography (Chen & Kumar, 2001; Thornthwaite, 1948): gradients in orographic precipitation (Jiang,
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2003; Roe, 2005) and differences in radiation on contrasting slope aspects (Bennie et al., 2008; Budyko, 1969;
Fu & Rich, 2002; Oliphant et al., 2003; Shevenell, 1999). These processes drive highly complex interactions
between moisture availability and net radiation, determining the partitioning of latent and sensible energy
fluxes, as well as moisture transport to the subsurface across the landscape (i.e., the climatic water balance).

Climate inputs of energy and water can be further modified by hillslope topography and result in the devel-
opment of microclimates across mountainous terrain (varying at scales of <1 to tens of meters).
Microclimates are the fine‐scale environmental conditions, which occur in localized areas close to the
soil‐atmosphere interface (Chen et al., 1999). Radiative and atmospheric processes that interact with topo-
graphic gradients at the hillslope scale can strongly influence microclimates. For example, the expansion
of thermal energy gradients (Minder et al., 2010; Rolland, 2003), development of cold air drainage
(Clements et al., 2003; Yoshino, 1984), and deflection of wind (Ruel et al., 1998) alter the water holding capa-
city of the air, and therefore vapor content, of the near surface atmosphere. These processes result in atmo-
spheric microclimates that are often unique to hillslope position (e.g., convergent hillslope hollows versus
sideslopes and ridgelines) and thereby alter evapotranspiration and depletion of the soil moisture reservoir.

Watershed hydrologists have long used surface topography to describe the movement of water in the subsur-
face in regions of considerable topographic complexity (e.g., Moore et al., 1991). This assumption is based
upon the profound effect of gravity on soil water potential gradients (Dingman, 2015). Subsurface potential
gradients associated with gravity in turn contribute to the dynamics of hillslope scale lateral flow (Weyman,
1973), which can be responsible for spatial patterns in soil moisture content (Grayson et al., 1997, Western
et al., 1999, Western et al., 2004; but see Tromp‐van Meerveld & McDonnell, 2005). However, the rate of
water movement in the subsurface is highly dependent on the water content of the soil (due to highly non-
linear relationships between soil water content and hydraulic conductivity; Campbell & Norman, 2012),
which varies widely across catchments. Despite this, SSF is a dominant hydrologic process that is responsible
for considerable transport of water from hillslopes to streams (Jencso et al., 2009; Jencso & McGlynn, 2011;
McGuire & McDonnell, 2010; Tromp‐van Meerveld et al., 2015).

Although processes associated with the climatic water balance and topographic gradients are critical to
understand the spatial patterns of moisture and subsurface flow across catchments (Ali et al., 2014;
McGuire et al., 2005; Nippgen et al., 2015; Woods, 2003), there is a lack of field‐based studies that investigate
how these processes interact across space and time from plots to entire catchments. A strong correlation
between topography, soil moisture, and SSF has been identified across hillslopes (Anderson & Burt, 1978;
Beven & Kirkby, 1979; Burt & Butcher, 1985; Fox & Weisberg, 2011; Grayson et al., 1997; Jencso et al.,
2009; McNamara et al., 2005; Troch et al., 2003; Western et al., 1998; Western et al., 1999), establishing topo-
graphy as a key factor that drives catchment function. However, catchment‐scale variability in the climatic
water balance and hillslope scale hydrologic and atmospheric processes are rarely combined to understand
the nested scales of influence leading to vapor pressure, soil moisture, and subsurface flow dynamics
across catchments.

Here we bridge this knowledge gap by evaluating site hydrometeorology at different hillslope positions
across six zero‐order catchments spanning a large gradient in the climatic water balance. Our goal was to
understand how the superposition (defined here as the spatial alignment; Williams et al., 2009) of the cli-
matic water balance and hillslope scale topography lead to the spatial and temporal patterns of catchment
moisture states. Further, we sought to quantify how the spatial organization of soil moisture and atmo-
spheric demand impact the duration of SSF response across all catchments. Finally, we estimate potential
changes in catchment‐scale SSF response due to climate change.

2. Study Area

The North Fork Elk Creek (NFEC) catchment is a 17.9‐km2 headwater basin of the Columbia River that is
located within the Garnet Mountain Range of Western Montana (Figure 1) at the University of Montana's
Lubrecht Experimental Forest. Historical meteorological conditions have been recorded by two snow survey
and telemetry (SNOTEL) stations within the NFEC catchment (Figure 1, white triangles). Mean annual tem-
perature and precipitation for these two stations are 4.2 °C with 514 mm and 3.0 °C with 664 mm for the low
elevation (Lubrecht Flume station #604 at 1,426‐m elevation) and high elevation (N Frk Elk Creek station
#657 at 1,905‐m elevation) stations, respectively. The elevation range within the NFEC basin is 1,230–
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2,030 m, and the stream network within the basin trends east‐west. This stream network organization (E‐W)
has resulted in predominantly north and south facing hillsides on either side of the NFEC creek (Figure 1).

The NFEC is a snow‐melt dominated catchment that stores ~46% of annual precipitation as snow at high
elevations. This winter storage of precipitation causes distinct seasonality in moisture across the catchment.
The NFEC is at its wettest state during and directly after snowmelt in April–May, becomes progressively
drier throughout the summer (May–July), and is at its driest state in August. NFEC then becomes progres-
sively wetter as fall rains become more abundant in September–October, after which the snowpack begins
to accumulate.

Figure 1. Map showing the location of the North Fork Elk Creek catchment within Montana, the climatic water deficit (CWD = potential evapotranspira-
tion − actual evapotranspiration) across the North Fork Elk Creek catchment and delineated boundaries of each study catchment. Generally, the climatic water
deficit decreases with increasing elevation and decreasing solar radiation. Call out plots show a map of the topographic wetness index for each study catchment
and the locations of each sensor network (vapor pressure deficit, volumetric water content, and shallow subsurface flow measurements). The white circles,
squares, and triangles represent hollow, sideslope, and upslope hillslope positions respectively. The dashed boxes show regions represented by call out plots. The
location of SNOTEL sites within the catchment are shown by white diamonds.
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The underlying lithology of the NFEC is primarily Quartz Monzonite with small portions of the periphery
along the northern catchment divide consisting of Mesoproterozoic metasedimentary mudstones and sand-
stones (Belt Supergroup). Soils are primarily well‐drained silty loams (National Cooperative Soil Survey, U.S.
Department of Agriculture, 2001). Soil depths generally vary as a function of hillslope position (med-
ian ± interquartile range for hollows and near stream zones: 1.34 m ± 0.55; sideslopes: 1.04 ± 0.42), based
on 51 shallow soil well depths (Data Set S1 in the supporting information). Three coniferous tree species,
Pseudotsugamenziesii (Douglas fir), Pinus ponderosa (ponderosa pine), and Larix occidentalis (western larch)
account for ~ 80% of stems in the Lubrecht Experimental Forest (Rowell et al., 2009). The other 20% of stems
are generally composed of Pinus contorta (lodgepole pine), Abies lasiocarpa (subalpine fir), and Picea engel-
mannii (Engelmann spruce).

3. Methods
3.1. General Study Design

We selected six zero‐order catchments across the NFEC that capture the variability of hillslope positions
and climatic water balance conditions within the basin (Figure 1). Each catchment was instrumented
with nine sensor stations, consisting of three ridge, sideslope, and hollow hillslope positions along down-
slope hydrologic flow paths (Figure 1). Thus, there were a total of 54 stations across the catchment (three
stations were excluded from the analysis due to destruction by bears). Each sensor network consisted of
instruments recording local hydrometeorological conditions (volumetric soil water content and vapor
pressure deficit [VPD]) and shallow groundwater wells that recorded the timing and duration of satura-
tion, which is assumed to reflect the occurrence of SSF. For this analysis, we used a 6‐month period of
observation from 1 April to 30 September, which represents the transition from wettest to driest condi-
tions across the catchment. Variables and symbols used throughout the manuscript are defined in
Table 1.

3.2. Quantification of Hydrometeorological Conditions

Each hydrometeorological station within the NFEC catchment (Figure 1) was outfitted with two relative
humidity (RH) and temperature (T) sensors (Aosong DHT22) and two capacitance‐based volumetric
water content probes (Decagon 5TE). RH and T sensors were installed in solar radiation and precipitation
shields at 15 and 200 cm above the ground surface. The volumetric water content probes were installed at
5‐ and 50‐cm depths below the soil surface (θ5cm and θ50cm; m

3 m−3 Figure 2). These sensors were con-
nected to a custom built, printed circuit board‐data logger that was powered by a 12v 4 Ah battery and
charged by a solar panel and a voltage regulator (SunGaurd 4.5A 12v Solar Charge Controller). Data were
recorded every 30 min. Above ground atmospheric demand for moisture was represented by the
VPD (kPa):

VPD ¼ et− et*
RH
100

� �

Table 1
Descriptions of Variables and Symbology Used in the Manuscript

Variable Units Description

VPDmean kPa Average vapor pressure deficit calculated using probes at 15 and 200 cm
above the ground surface

VPD kPa Time‐averaged vapor pressure deficit calculated from the VPDmean time series
θ5cm m3 m−3 Volumetric water content at 5‐cm depth
θ50cm m3 m−3 Volumetric water content at 50‐cm depth
θmean m3 m−3 Average volumetric water content between probes at 5‐ and 50‐cm depth
θ m3 m−3 Time‐averaged volumetric water content calculated from the θmean time series
HDI kPa The hydrometeorological dryness index calculated from the ratio of VPDmean and θmean
HDI kPa Time‐averaged hydrometeorological dryness index calculated from the HDI time seriesbP SSFð Þ t t−1 Proportion of time that shallow subsurface flow was present at a given well location
P (SSF|HDI) NA Probability of observing shallow sub surface flow (SSF) given the time averaged

hydrometeorological dryness index value (HDI) of a site
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where et is the saturation vapor pressure and RH is the relative humidity in percent. The saturation vapor
pressure was calculated according to Tetens (1930):

et ¼ 0:6108* exp
17:27*T
T þ 237:3ð Þ

� �

where T is the temperature. The mean VPD (VPDmean; Figure 2) was subsequently calculated by averaging
the recorded VPD at 15 and 200 cm for each sensor network location and time step (30 min).

We calculated volumetric water content from dielectric permittivity following Topp et al. (1980) using the
manufacturer's suggested equation. This paired soil moisture probe design contributed to a more accurate
representation of the soil moisture conditions throughout the soil profile. For each station, the mean volu-
metric water content (θmean) was calculated by averaging θ5cm and θ50cm for each sensor location and time
step (30 min).

In addition to the hydrometeorological stations described above, we installed shallow groundwater wells at
each sensor network location (Figure 1). These wells were used to assess how spatial patterns of site hydro-
meteorology contributed to SSF dynamics. Wells were installed with a solid steel rod, inserted into the
screened PVC casing, and driven to refusal, which is assumed to be at the bedrock‐soil interface. Wells con-
sisted of 3.8‐cm diameter PVC pipe screened across the entire depth. At the surface, all wells were sealed
with a bentonite slurry. Water levels were measured every hour across the well network using either
TruTrack Inc. capacitance rods or Solinst pressure transducers (Levelogger model 3001).

Figure 2. Plots representing data collected in the North Fork Elk Creek from 1 April to 30 September of 2016 separated by hillslope position (hollow, sideslope, and
upslope). Each panel represents precipitation, mean vapor pressure deficit from probes at 15 cm and 200 cm above the surface (VPDmean; kPa), soil moisture at
5‐ and 50‐cm depths (θ5cm, θ50cm respectively, m3 m−3), the hydrometeorological dryness index (HDI; kPa), and water table depth below ground (m) for each
sensor station. Each time series is color coded by the mean monthly climatic water deficit of a site.
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For each well we calculated the proportion of observations where saturation, and thus SSF, occurred (bP SSFð Þ
) to inform a model describing the probability of SSF for a given sensor network location. The proportion of
observations where SSF occurred for each well was estimated as

bP SSFð Þ ¼ ObservationsWW

ObservationsTotal

� �

where ObservationsWW represents the number of observations where water was present in the well and
ObservationsTotal represents the total number of observations recorded between 1 April and 30 September.
We also characterized hourly precipitation using data from the Lubrecht Flume SNOTEL (604), which
was subsequently summed for each day to calculate daily precipitation amount.

3.3. Hydrometeorological Dryness Index

To describe the combined hydrometeorological conditions in the near‐surface atmosphere and soil, we cal-
culated the hydrometeorological dryness index (HDI; kPa) following Martin et al. (2017). We used the HDI
because it integrates both above and below ground moisture conditions, representing the moisture supply
and demand at a site. The HDI also serves as a simple proxy for the driving force of water flow across the
soil‐plant‐atmosphere continuum (Martin et al., 2017; Sperry et al., 2003), although it is not our intent to
model the moisture flux across this gradient. HDI was calculated as:

HDI ¼ VPDmean

θmean

where the VPDmean is the mean VPD (of the paired VPD probes at each site) and θmean is the mean volu-
metric water content (of the paired soil moisture probes at each site) for each recorded time step.
Therefore, for each sensor network location we computed half hourly time series of the HDI (Figure 2).

For each sensor location we calculated the time‐averaged mean volumetric water content (θ), VPD (VPD),

and HDI (HDI) for the season as a whole (seasonal average; 1 April to 30 September), and for each month

individually. θ and VPD represent the average moisture storage and demand of the site respectively. HDI

represents the average hydrometeorological conditions for a given location. Low values of HDI indicate

wet conditions, which arise when atmospheric demand (VPD) is small and soil moisture content (θ) is high.
Alternatively, large values of HDI represent dry conditions, which arise when atmospheric demand is large
and when soil moisture content is low.

3.4. Quantification of Catchment Topography

We selected the topographic wetness index (TWI) to characterize the topographic influence on soil moisture
across the NFEC. The TWI accounts for two topographic controls on water movement; the specific drainage
area contributing to a hillslope position and the local slope (Beven & Kirkby, 1979). The TWI was derived as
a similarity index to describe shallow soil moisture and groundwater levels (Beven & Kirkby, 1979; Detty &
McGuire, 2010; Grayson et al., 1997; Jencso et al., 2009; Rinderer et al., 2014; Seibert et al., 2003; Western
et al., 1999) but has also been correlated with ecological processes such as forest carbon accumulation and
productivity (Hoylman et al., 2018; Swetnam et al., 2017).

To calculate the TWI, we used a 1‐m2 digital elevation model (DEM) derived from light detection and
ranging acquisitions for the catchment that were obtained in June of 2005 (Horizons Inc., Rapid City,
South Dakota). DEM pixel sizes were resampled to 10‐m resolution in order to eliminate
microtopographic features, which are unlikely to influence subsurface redistribution and microclimatic
conditions (e.g., logs and surficial boulders). Using the SAGA GIS platform (Conrad et al., 2015), the
TWI was calculated as

TWI ¼ ln
α

tan βð Þ
� �

where ɑ is the specific upslope accumulated area for a given point in the catchment and b is the local slope.
For the upslope area calculation we used the triangular multiple direction flow algorithm (Seibert &
McGlynn, 2007).
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3.5. Gridded Water Balance Data

We characterized catchment‐scale climatically driven moisture and energy availability using a simple daily
soil water balance model, created at 8‐arc second (~250‐m) resolution and subsequently downscaled to 30 m
by thin plate spline regression (Nychka et al., 2017). This model is a highly simplified representation of cli-
matically driven water availability; it was not our intent to represent the precise magnitude of the water bal-
ance of the NFEC, rather we used this dynamic index to quantify relative differences in seasonal water
availability across the watershed. Due to the simplicity of this vertical water balance model, lateral flow, bed-
rock leakage, or variability in vegetation cover are not considered in the water balance calculations. We
incorporate the effects of lateral flow by using the TWI in conjunction with this water balance model.
These limitations certainly add error to the water balance model; however, we suggest that this approach
is a more accurate representation of climatic conditions compared to using static measures alone (such as
annual insolation and/or elevation grids).

In the model, the soil at each grid cell was treated as a single layer whose depth was defined by a soil water
holding capacity extracted from the SSURGO database. Incoming precipitation was stored in the soil and
treated as saturation excess runoff when storage was exceeded. Vegetation was assumed to be a uniform
grass cover, and water loss from the soil (via evapotranspiration) was estimated using the Penman‐
Monteith formulation, following methods provided by the Food and Agriculture Organization (FAO;
Allen et al., 1998). Daily snowpack accumulation and melt were estimated using an empirical model driven
by daily temperature, radiation (corrected for cloud cover, slope, and aspect), and precipitation (Holden
et al., 2018). Inputs to the model included daily solar radiation and temperature (Holden et al., 2016), daily
minimum and maximum RH (Holden et al., 2018), daily 4‐km resolution precipitation (Abatzoglou, 2013),
and wind speed from the North American Regional Reanalysis (Mesinger et al., 2006). We generated daily
data for the NFEC for 2016, estimating potential evapotranspiration (PET), actual evapotranspiration
(AET), and the unmet demand, or the climatic water deficit (CWD = PET‐AET) for each time step. Daily
CWD grids were then summed for each month to produce total cumulative monthly CWD grids at 250‐
m resolution.
3.5.1. Downscaling to 30‐m Resolution
We used a secondary downscaling approach to more finely resolve the elevation and insolation mediated
variations in the soil water balance. Using a 30‐mDEM to correct for terrain geometry (e.g., shading of direct
radiation by adjacent terrain and slope/aspect adjustment of radiation intensity), we calculated monthly
mean clear‐sky (cloud‐free) radiation from 1 April to 30 September using the SOLPET6 algorithm (Flint &
Childs, 1987; Flint & Flint, 2008). These grids were then combined to produce a monthly mean clear‐sky
radiation grid. This radiation and elevation data serve as a physical template for mapping the radiation
and elevation variability within the 250‐mCWD data. We then used thin plate spline regression, implemen-
ted in the R computing language with the library fields (R Core Team, 2017, Nychka et al., 2017), to estimate
the CWD for each month as a function of solar radiation and elevation. Here we extracted a sample of 1,000
CWD grid cells with their underlying elevation and radiation, fit the regression, and then predicted the fitted
model back to the 30‐m grids. The resulting 30‐m CWD maps retain the scale and spatial properties of the
original 250‐m data, but with additional topographic detail that is more closely aligned with the scale of
the TWI data.

3.6. Assessment of Site Hydrometeorology

To quantify the relative roles of landscape topography and the climatic water balance on the spatial
variability of hydrometeorology, we fit generalized linear mixed models (GLMMs, lme4 R package;

Bates et al., 2014) to each response variable (θ, VPD, and HDI ) for the season and during individual
months. A GLMM framework was used for our modeling efforts to account for nonnormal data distribu-
tions and to account for random effects across study catchments (Bolker et al., 2009; McCulloch &
Neuhaus, 2001). For these response variables, each GLMM assumes a gamma distribution (bound by 0
and ∞), which utilizes a log link. In each GLMM we included a catchment identifier which we used
as a random effect term (see call‐out maps in Figure 1, which show the six catchments) to account for
catchment specific variability, which was not driven by the fixed effect variables (TWI, CWD, and an
interaction term [TWI:CWD]).
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We used these GLMMs to assess the explanatory power of the fixed effect terms only (random effects were

not used in any prediction) on spatiotemporal patterns of θ,VPD, andHDI (Figure 3 and Table 2). We report
the population averaged model (only fixed effects) for each response variable and time period in Table 2.
Similarly, for all predictions (such as in Figures 3, 5, and 6), we used only the model's fixed effects. We used
the Akaike information criterion (AIC) to select the best model (i.e., which terms were included in each
model) to describe spatial patterns of each response variable (Venables & Ripley, 2002; Wagenmakers &
Farrell, 2004). For each fixed effect term we conducted an analysis of deviance significance test, presented
as p‐values, using a Type II (when no interaction terms were present) or Type III (when interaction terms
were present) Wald χ2 test (Table S1; car R package, Fox &Weisberg, 2011). After fitting each model we cal-
culated the coefficient of determination (R2) to assess the variance explained by the cumulative effect of the
fixed effect model terms.

3.7. Assessment of SSF

In a similar fashion to the models described above, we quantified the relationship between seasonal average

moisture conditions of a site (θ, VPD, andHDI as predictor variables) and the seasonal probability of satura-

tion (bP SSFð Þ) using three independent GLMMs. This allowed us to evaluate how site moisture state (either
volumetric water content, VPD, or the combined hydrometeorological conditions) affected the probability of
observing a shallow groundwater table, and thus subsurface flow. All three of these GLMMs assumed a bino-
mial distribution and utilized a logit link, appropriate for modeling probability using proportions of grouped
observations where groups represent observations from a single well time series. In the GLMMs we included
a catchment identifier, which was considered a random effect term to account for catchment specific varia-

tion in subsurface flow dynamics (such as differences in bedrock percolation). The GLMMs considered θ,
VPD, and HDI for each site as a fixed effect to represent the universal influence of site moisture state and
hydrometeorology on subsurface flow dynamics. This allowed us to approximate the population average

probability of SSF with respect to the fixed effect terms (i.e., P [SSF|HDI ] for example). The general form

Figure 3. Generalized linear mixed model predicted mean hydrometeorological dryness index (HDI; ratio of vapor pressure deficit and volumetric soil water con-
tent) and the observed HDI values for each sensor location and time period. Conditions become progressively wetter (lower HDI) in increasingly convergent hill-
slope positions (larger topographic wetness indexes [TWIs]) and as the climatic water deficit (CWD) decreases. The wettest conditions occur where convergent
terrain and low climatic water deficits align. The time period considered (seasonal and monthly) and variables selected for each model are shown in the top left
corner of each plot. Colors represent the monthly climatic water deficit at the sensor location for the time period considered, and symbol shape represents the
hillslope position for each sensor location. R2 values were calculated using observed and predicted HDI values.
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of each GLMM described above is presented in the Supporting
Information Document S1 (equations (S1) and (S2)).

3.8. Out‐of‐Sample Model Validation

We evaluated the out‐of‐sample predictive power and coefficient stability
of each model used for spatial prediction using a Monte Carlo cross‐
validation approach. Here we randomly selected 60% of the data set to
train a model and used the remaining 40% to test the model. We ran the
Monte Carlo cross‐validation simulation 2600 times. For each iteration,
we refit the GLMM to the training data set, used the estimated fixed effect
coefficients to estimate the values of the testing data set, and subsequently
calculated the predictive power (R2) for each model. We also stored each
model's fixed effect coefficient estimates to evaluate the coefficient stabi-
lity of the model.

3.9. Catchment‐Scale Hydrometeorology and SSF

We calculated spatial estimates of the hydrometeorological conditions

across the NFEC using the seasonal population average models for HDI

and P (SSF|HDI). The HDI model used gridded data sets of TWI and the
CWD as input data sets to approximate the spatial distribution of hydro-

meteorological conditions across the basin. The resultant HDI grid was
then used as an input data set to calculate the spatial distribution of SSF

probability given HDI (i.e., P [SSF|HDI]).

To examine how values of HDI and P (SSF|HDI ) varied within discrete
zones of the climatic water balance, we separated the NFEC catchment
into three regions with equal areas (high, moderate, and low CWD ter-
tiles), as determined by the seasonal mean monthly CWD for April–
September 2016 (Figure 1). Generally, regions of high CWD (>61.8 mm;
Figure 1, red lines) were located at low elevations along southerly aspects,
whereas regions of low CWD (<52.9 mm; Figure 1, blue lines) were
located at high elevations along northerly aspects. All other spatial regions
are considered moderate CWD regions (61.8–52.9 mm; Figure 1, green
lines). For each spatial prediction and each climatic water balance region,

we generated empirical cumulative distribution functions (CDF) to evaluate the general behavior ofHDI and

P (SSF|HDI) values with respect to the climatic water balance.

3.10. Potential Climate Change Impacts on SSF

We approximated potential changes in SSF in the NFEC due to climate change by estimating the spatial dis-
tribution of SSF undermore arid climatic conditions.We accomplished this by applying a 15% increase to the
observed CWD distribution for the NFEC. This increase represents a reasonable, albeit very simple, approx-
imation for CWD conditions in the midcentury (2040–2060; see Anderegg et al., 2015). We then applied the

seasonal average HDI model to the new CWD grid to obtain an estimate of the HDI conditions for the mid-

century. Next we calculated the change in SSF as a function of the newHDI grid (ΔP [SSF|HDI]) by subtract-
ing the current SSF estimates from the SSF estimates from the 15% CWD increase scenario. While this is a
reasonable approximation of potential changes to CWD due to climate change, linear extrapolation such
as this does not incorporate nonlinear and asymptotic behaviors in future CWD conditions; there is uncer-
tainty in this estimate.

4. Results
4.1. Topographic and CWD Impacts on Local Hydrometeorology

The TWI and CWD were selected as significant predictors of θ (Table 2) for each time period (seasonal aver-

age and individual months). The TWI and the CWD were also selected to model VPD for each time period,
except for April and June (where no predictors were selected, for example, AIC was lowest with only the

Table 2
Time‐Averaged Volumetric Water Content ( θ ; m3 m−3), Vapor Pressure
Deficit (VPD ; kPa), and Hydrometeorological Dryness Index (HDI ; kPa)
Generalized Linear Mixed Model (GLMM) Fixed Effect Coefficients and R2

for Each Time Period Considered

Variable Time period Intercept TWI CWD
TWI:
CWD R2

θ
Seasonal
Average

−0.810 0.091 −0.028 NA 0.416

April −1.904 0.076 −0.030 NA 0.466
May −1.548 0.073 −0.022 NA 0.428
June −0.524 0.084 −0.026 NA 0.377
July 0.596 0.095 −0.033 NA 0.375
August 1.810 0.101 −0.041 NA 0.377
September −0.947 0.114 −0.042 NA 0.354

VPD
Seasonal
Average

−1.025 −0.032 0.017 NA 0.375

April −1.265 NA NA NA NA
May −1.754 0.042 0.044 −0.003 0.463
June 0.030 NA NA NA NA
July −1.181 −0.027 0.015 NA 0.300
August 1.037 −0.512 −0.007 0.004 0.552
September −0.589 −0.254 0.003 0.004 0.351

HDI
Seasonal
Average

−0.234 −0.117 0.048 NA 0.672

April −0.027 −0.045 0.185 −0.007 0.553
May −0.592 0.039 0.084 −0.005 0.667
June −1.745 0.136 0.061 −0.003 0.552
July −1.594 −0.113 0.046 NA 0.618
August −3.901 −0.116 0.063 NA 0.688
September −1.496 −0.124 0.082 NA 0.534

Note. Each GLMM assumes a gamma distribution with a log link func-
tion. All coefficients are reported in log space. NA, not available.
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intercept term; Table 2). Similar to θ, the TWI and the CWDwere selected

to modelHDI (Table 2 and Figure 3) for every time period. An interaction
term between TWI and the CWD (TWI:CWD) was also selected as an
important predictor for May, August, and September for the monthly

VPD GLMMs and the April, May, and June HDI GLMMs (Table 2). This

multiplicative interaction describes a differential effect of TWI on VPD

and HDI as a function of the CWD.

Generally, as values of TWI increased (transitioning from ridgelines and

planar slope positions to convergent hillslope positions),θ increased while
the VPD and HDI decreased. As the CWD became less arid (transitioning

from low elevation south aspects to high elevation north aspects),θ tended
to increase while VPD and HDI tended to decrease. The wettest locations

(largest θ and smallestVPD andHDI) occurred where convergent hillslope
positions and locations of low CWD (high elevation and north aspect)

were aligned in space. Further investigation to the behavior of the HDI

seasonal average model revealed that the difference in HDI between hol-
low and upslope hillslope positions increased as the CWD became more
arid (discussed further below, see Figure 7a for reference).

4.2. Hydrometeorological Conditions and SSF

Qualitative evaluation ofHDI at each site and the magnitude of precipita-
tion (mm/day) revealed differences in the amount of precipitation
required to initiate and sustain SSF (Figure 4). Large precipitation events

(20 mm/day) in mid‐July and mid‐August were sufficient to cause SSF in almost all of the wells in the catch-

ment, even those in dry HDI locations (Figure 4, dark red lines). However, SSF in these dry HDI locations
tended to be highly transient and occurred for short durations (i.e., hours to days). Conversely, in locations

with moderateHDI (such as Figure 4, green lines), SSF occurred during relatively small precipitation events

and was sustained for long durations (i.e., days to weeks). In locations of particularly wetHDI (Figure 4, blue
lines), SSF persisted for the duration of the study period.

We quantified the relationship betweenHDI and bP SSFð Þ using a binomial GLMM (Figure 5 regression line,

intercept = 6.948, fixed effectHDI coefficient =−1.505, both in logit space). The R2 value for this relationship

was 0.64, and the p‐value of theHDI coefficient was <0.05 using a Type II Wald χ2 test. We also evaluated the

relationships between θ and VPD on seasonal bP SSFð Þ independently, but theHDI model preformed the best

(AIC was 56239.3, 78778.2, and 118274.5 for models using HDI , θ, and VPD respectively).

We used the significant relationship between HDI and bP SSFð Þ to estimate the space and time variability of
SSF across the larger NFEC catchment. In general, hillslope hollows (Figure 5, circles) had longer durations

of SSF than sideslope and upslope positions (Figure 5, squares and triangles respectively). Similar to theHDI,
the superposition of topography and the climatic water balance determined the spatial and temporal occur-

rence of SSF across the NFEC. P (SSF|HDI) values were close to 0 in zones of high CWD (Figure 5, red and
orange symbols), even in areas with very large TWI values (e.g., large drainage areas with low local slope,
Figure 5, red circles). As the CWD decreased and climatic water balance conditions becamewetter (e.g., high
elevation and northerly aspects), the duration of SSF increased. Long periods of SSF occurred within hollow
hillslope positions with large contributing areas (Figure 5, blue circles), as well as along steep sideslope and
upslope positions with very small contributing areas (Figure 5, blue triangles and squares) when the catch-
ment was positioned in regions of low CWD (high elevation and northerly aspect).

4.3. Assessment of Predictive Power

Both theHDI and P (SSF |HDI) models performed well when predicting out‐of‐sample testing data sets. The

median ± interquartile range of the prediction R2 of the 2,600 runs was 0.66 ± 0.15 for the HDI model and

0.61 ± 0.23 for the P (SSF|HDI) model (Figure S1). The median ± interquartile range of the TWI and CWD

Figure 4. Binary plot showing the observed seasonal time averaged hydro-
meteorological dryness index (HDI) value and the period of shallow sub-
surface flow for each well across the North Fork Elk Creek catchment. The
colored lines represent periods of saturation, assumed to be shallow sub-
surface flow, in each well with respect to the HDI for that location (colors
also represent the HDI value). A hyetograph representing a time series of
rainfall at the Lubrecht Flume SNOTEL (#604) is presented on the inverted y
axis. Generally, locations with wet hydrometeorological conditions (low
HDI) had persistent shallow subsurface flow, while more arid locations
(high HDI) exhibited transient shallow subsurface flow dynamics when
sufficient precipitation occurred.
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estimates were−0.118 ± 0.021 and 0.047 ± 0.011, respectively, for theHDImodel (which were very similar to
the estimates obtained when fitting the model with the entire data set; Figure 3 and Table 2). The

median ± interquartile range of the HDI model estimates for the P (SSF|HDI ) model was −1.65 ± 0.64
(which were also very similar to the estimates obtained when fitting the model with the entire data set;
Figure 5). This result indicates that both models that were ultimately used to predict the catchment scale

patterns of HDI and P (SSF|HDI) were reasonable models for spatial analysis. However, the validation of
these models was constrained to the conditions observed across the six study catchments and therefore
uncertainty beyond these conditions is larger.

4.4. Catchment‐Scale Estimates of Hydrometeorology and Saturation

We evaluated CDFs for catchment scale estimates ofHDI and P (SSF|HDI) across discrete zones of the CWD.

The CDF curves forHDI (Figure 6a) emphasized that the spatial variability ofHDI was related to the CWD
(e.g., larger tails of the CDF are found in drier climatic water balance regions indicating greater spatial varia-

bility). We also observed that the CWD shifted theHDI values toward wetter or drier conditions, which was
expected given the CWD model coefficients (Table 2). It is important to note that slight differences in the
TWI and CWD distributions for each climatic water balance tertile contributed to the variability in the

CDF distribution for HDI . About 50% of the catchment area had HDI < 9.81, 6.79, and 4.60 kPa for high,
moderate, and low CWDs, respectively.

CDFs of (P [SSF|HDI ]; Figure 6b) for each climatic water balance tertile illustrate the dramatic effect the
CWD has on the occurrence of SSF in the NFEC. In high CWD regions (Figure 6b, red line), very large drai-
nage areas with low slopes were required to initiate SSF; however, SSF was highly transient and occurred for
short durations. In zones of moderate CWD (Figure 6b, green line), hillslope positions with sufficiently large
drainage areas and low slopes (TWI) were more likely to sustain SSF. In locations of low CWD (Figure 6b,
blue line), saturation was likely across most hillslope positions, even far upslope and on ridgelines. For each

climatic water balance tertile, 50% of the catchment area had P (SSF|HDI) values of <0.001, 0.036, and 0.503
for high, moderate, and low CWDs, respectively.

To further investigate the behavior ofHDI as a function of the TWI and CWD, we interpolated the seasonal

average HDI model for a gradient of TWI values between 2.5 and 12.5 and across a range of CWD values
(Figure 7a). The TWI values represent hillslope‐scale topographic characteristics of zero‐order catchments,
while the CWD values represent observed and potential climatic water balance conditions for the NFEC

Figure 5. Plot showing the generalized linear mixed model used to quantify the relationship between the seasonal HDI
and the probability of shallow subsurface flow (SSF) at each well location. Colors represent the mean monthly climatic
water deficit, and symbols represent the hillslope position for each sensor location. Generally, locations with lower HDI
values have a higher probability of longer durations of shallow subsurface flow response.
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(potential conditions assume a 15% increase). We also include the values of HDI where the probability of

SSF was 0.95, 0.50, and 0.05 (Figure 7a; P [SSF|HDI ], dashed lines). In general, the difference between

hollow and ridge hillslope positions (i.e., ΔHDI for TWI values of 2.5 and 12.5) is relatively large in high
CWD regions and becomes progressively smaller as the CWD decreased. Similarly, an equivalent change

in the observed CWD range (43.4–74.1 mm) caused HDI to vary
substantially for upslope and ridgeline hillslope positions (TWI = 2.5)
but caused relatively little change for more convergent hillslope
positions (TWI = 12.5).

Finally, using an approximation of the potential climate change impacts
on the CWD for the mid‐century (15% CWD increase, Figure 7a), we cal-

culated the predicted change in SSF for the NFEC (ΔP [SSF|HDI]; Figure 7

b). Generally, the largest changes in P (SSF|HDI ) occurred where low
CWD promoted SSF along upslope hillslope positions. Locations with
large drainage areas and low slopes had an attenuated response to
increases in the climatic aridity, and as a result, were characterized by

smaller reductions in P (SSF|HDI) than nearby upslope counterparts.

5. Discussion

Our results confirm that the hydrometeorology of the NFEC catchment is
highly influenced by hillslope‐scale topographic convergence and diver-
gence and catchment‐scale gradients in the climatic water balance
(Figure 3). These findings suggest that the superposition of hillslope scale
topography and the climatic water balance need to be considered when
describing spatial and temporal patterns of hydrometeorology within
complex terrain. We observed consistently wetter conditions in the sub-
surface and atmosphere in convergent hillslope positions across all study
catchments. Hydrometeorology varied significantly along upslope hill-
slope positions across the CWD gradient in our 17.9‐km2 catchment; from
relatively wet in locations with low CWD to relatively dry in locations
with high CWD (Figure 7a). This effect was also important for hillslope
hollows; however, the magnitude of change was significantly smaller

Figure 7. (a) Generalized linear mixed model estimates of mean seasonal
hydrometeorological dryness index (HDI) as a function of the topographic
wetness index (TWI; color ramp) and the mean monthly climatic water
deficit (CWD). The dashed lines represent the HDI values that correspond
with 5, 50, and 95% shallow subsurface flow probabilities. (b) Map showing
the change in shallow subsurface flow probability (ΔP [SSF|HDI]) given a
15% increase in the observed climatic water deficit.

Figure 6. Cumulative distribution functions (CDFs) and spatial estimates of the (a and c) mean seasonal hydrometeoro-
logical dryness index (HDI) and the (b and d) probability of shallow subsurface flow (P [SSF|HDI]) for the North Fork Elk
Creek catchment. The line colors on each CDF plot represent pixels falling within each tertile of the deficit (>61.8 mm,
61.8–52.9 mm, and <52.9 mm are red, green, and blue respectively).
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(Figure 7a). This result demonstrates the nested scales of influence and the relative effect of hydrologic redis-
tribution and the climatic water balance that determine the dynamic organization of moisture across
a catchment.

The superposition of the climatic water balance and topography had a particularly significant effect on the
spatial patterns of SSF in the NFEC. Catchment positions with large drainage areas and low local slopes
located within areas of large CWDs (i.e., catchments at low elevation and southerly facing) were character-
ized by short and highly transient saturation events, if saturation occurred at all (Figures 4 and 5).
Conversely, when catchments were located in areas with small CWDs (i.e., catchments at high elevation
and northerly facing slopes) saturation events occurred frequently and for longer durations across all hill-
slope positions, even far upslope from the convergent hollow (~70‐m upslope from the adjacent hollow).
Our results suggest that characterizing vapor pressure, soil moisture, and SSF along gradients of topography
and the climatic water balance is critical for scaling and transferring process understanding of subsurface
flow dynamics across catchments.

5.1. Spatiotemporal Patterns of Soil Moisture

We observed significant spatial organization of soil moisture across the NFEC catchment, which was
relatively consistent through time (Table 2). The relative magnitude of soil moisture for a catchment as
a whole (intercatchment) was driven by catchment‐scale gradients in the climatic water balance, while
the moisture of each site (intracatchment) was highly influenced by hillslope‐scale convergence and
divergence (Figure 2). This reflects the hierarchical controls on soil moisture, which originate from the
climatic water (and energy) balance and are subsequently altered by hydrologic and atmospheric
processes operating across zones of hillslope topographic convergence and divergence (represented by
the TWI).

The intercatchment patterns of soil moisture related to the CWD in the NFEC provide further evidence of
the strong influence of the climatic water balance on spatial patterns of soil moisture (Table 2). Our results
align with Langston et al. (2015), who showed that snowmelt dynamics on north versus south facing slopes
produced higher sustained soil moisture on north facing slopes (lower CWD than southerly facing slopes)
despite similar snowpacks. Williams et al. (2009) also showed the important influence of aspect and slope
on soil moisture patterns in a snow‐dominated semiarid watershed in Idaho.

The topographic controls on moisture patterns for our study were more persistent and spatially organized
than those described in several other studies (e.g., Burt & Butcher, 1985; Grayson et al., 1997; McNamara
et al., 2005). This result is in contrast to the preferential states hypothesis of Grayson et al. (1997), which
posits that soil moisture patterns are organized along hillslope topographic gradients (drainage lines) only
when SSF processes are active; during the wet portion of the season. We observed greater volumetric water
contents in convergent positions along hillslope drainage lines (spatially organized along the TWI) even in
sites where SSF was almost entirely absent throughout the season (Table 2). This may reflect enhanced soil
moisture due to the downslope movement of water in the unsaturated zone or the cumulative effect of
microclimates on soil moisture (such as reduced VPDs, reduced wind speeds, reduced radiation exposure,
and therefore smaller evaporative fluxes) in convergent zones.

In a forested catchment inMaryland, Tenenbaum et al. (2006) observed strong and temporally persistent soil
moisture along convergent hillslope topography under both wet and dry moisture conditions. Our results
support this finding and indicate strong intracatchment‐ and intercatchment‐scale patterns in soil moisture
regardless of moisture state, even during the driest time periods. These results support research describing
temporal stability of soil moisture patterns (Gómez‐Plaza et al., 2000; Grant et al., 2004; Kachanoski &
Jong, 1988; Mohanty & Skaggs, 2001; Tenenbaum et al., 2006), although we demonstrate that the relative
volumetric water content across catchments varies as a function of the climatic water balance. While some
of this stability in moisture may be attributed to soil properties (i.e., Grant et al., 2004; Lin, 2006), our results
suggest that the topographic organization of microclimate (VPD; Western et al., 2004) in conjunction with
the occurrence of SSF (similar to mechanisms attributed to the wet state spatial organization in Grayson
et al., 1997) are both important. We suggest that the degree and temporal consistency of observed topo-
graphic organization of soil moisture highly depends on the scale of observation (e.g., plot, hillslope or catch-
ment scale) and the density of observations across sites (Tenenbaum et al., 2006).
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Our CWD approach did not account for potential differences in transpiration rates that are a significant com-
ponent of the water balance in NFEC due to the variation in density, species, and phenology of vegetation
along hillslope flow paths (Looker et al., 2018). Root water uptake associated with the spatial distribution
of vegetation influences soil moisture (Renner et al., 2016) and the expansion and contraction of active
catchment contributing areas (Nippgen et al., 2015). Hoylman et al. (2018) reported greater total forest bio-
mass and longer periods of vegetation greenness (a proxy for photosynthetic activity) in convergent hillslope
positions in the NFEC. Greater photosynthetic activity in convergent hillslope positions promotes greater
rates of transpiration (Hawthorne &Miniat, 2018), and ultimately causes reductions in soil moisture in con-

vergent positions. These considerations would contribute to unexplained variance in our HDI model and
uncertainty in our CWD model. However, we hypothesize that the upslope subsidies of moisture via SSF
pathways and the microclimate of convergent hillslope positions is sufficient to offset large transpiration‐
related moisture reductions in convergent hillslope positions relative to sideslope and ridgeline positions.

5.2. Spatiotemporal Patterns of Vapor Pressure Deficits

We observed considerable organization of atmospheric vapor pressure across the NFEC catchment (Table 2)
that was similar to the subsurface moisture patterns, although spatial correlations were slightly weaker than

for soil moisture (seasonal θ R2 = 0.42; seasonal VPD R2 = 0.38; Table 2). Atmospheric VPDs tended to
become smaller in convergent locations with high TWI values, as well as in regions with wet climatic water
balance conditions (lower CWD). This organization is representative of the mutual interactions between soil
moisture and atmospheric vapor that determine the partitioning of latent and sensible heat fluxes
(Entekhabi et al., 1996; Gu et al., 2006), as well as topographic controls on atmospheric turbulence via topo-
graphic deflection of wind (Ruel et al., 1998). Reductions in wind speed in convergent hillslope positions
decrease the potential for the near‐surface atmosphere to redistribute moist air parcels to the bulk air above
the canopy, increasing the RH. There is also likely a biotic component, such that vegetation canmodify wind
speeds and solar radiation below canopies (Campbell & Norman, 2012; Chen et al., 1999; De Frenne et al.,
2013), influencing the temperature, water holding capacity, and evaporative flux of the near‐surface atmo-
sphere (Royer et al., 2012). The combined effect of vegetative and topographic deflection of wind, radiation
sheltering by conifer canopies, and increasedmoisture content of the soil all likely contribute to the observed
organization of VPD across gradients in the TWI.

5.3. Patterns of Hydrometeorology

We combined a measure of atmospheric demand (VPD) and soil moisture (θ) into a simple index (HDI;
Martin et al., 2017) in order to better describe the hydrometeorological conditions of the near‐surface atmo-
sphere and soil. In semiarid forests, VPD affects rates of soil water evaporation and therefore soil moisture
contents in the top 5 cm of the soil zone (Raz‐Yaseef et al., 2012). Soil moisture content influences the matric
potential of the soil surface, affecting infiltration and percolation of precipitation into the soil column
(Campbell & Norman, 2012). This atmospheric influence would not be captured by soil moisture probes
positioned in the shallow soil column (such as 5 cm below the O/A horizon), especially when organic litter
is present above the mineral soil. By combining the atmospheric demand with soil moisture we suggest that
a better representation of near‐surface hydrometeorological moisture availability is obtained.

Similar to our findings of the spatiotemporal organization of soil moisture across the NFEC, we saw consid-
erable temporal consistency in the spatial organization of local hydrometeorology (Table 2 and Figure 3).
Topographic controls on hydrometeorology have been observed before, with elevation imparting the pri-
mary control (Vivoni et al., 2007); our results highlight the strong influence of hillslope scale topography.
However, our research design was considerably different to previous studies, primarily due to the spatial
density of our network with a focus on both climatic controls (similar to those reported by Vivoni et al.,
2007) and hillslope scale topographic gradients. Our results in conjunction with the results of Vivoni et al.
(2007) provide evidence of the nested scales of influence on site hydrometeorology, controlled hierarchically
by climate, and topographically controlled hydrologic processes.

An intriguing result emerged from modeling HDI continuously across gradients in TWI and the CWD.
Specifically, the relative difference in hydrometeorology between sideslope and hollow hillslope positions

(ΔHDI; Figure 7a) varied based on the CWD. The greatest values of ΔHDI (13 kPa) for the observed CWD
range occurred in regions with the driest climatic water balance conditions (Figures 1; 3, red symbols; and
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7a), which was remarkably larger than that of the wettest climatic water balance regions (3.3 kPa). This key
result shows that hillslope‐scale topography becomes an increasingly important driver of variability in
hydrometeorology (e.g., the difference in hydrometeorology between hillslope positions within a
catchment is greater) as landscapes transition from relatively wet to relatively dry climatic water balance
conditions. This result can be extrapolated across time, suggesting that hillslope topography may
attenuate changes in hydrometeorological moisture availability as climate change increases aridity in
regions such as the Western U.S.

5.4. Hydrometeorology and Subsurface Flow

The antecedent moisture condition of a site is an important factor contributing to the occurrence of SSF in
steep catchments with well drained soils (Dunne & Black, 1970; Freeze, 1972; James & Roulet, 2009; Penna
et al., 2011; Sidle et al., 2000) because the amount of water needed (e.g., snowmelt or rainfall) to achieve
saturation, and therefore SSF, is conditional on the amount of moisture in the soil pore spaces prior to water
input. Although intuitive, this theoretical framework provides a powerful method to describe where SSF is
likely to occur in catchments with spatially variable moisture conditions due to topography and gradients in
the climatic water balance. Indeed, in the NFEC, the duration and probability of SSF was highly related to
the average moisture state of a site (Figures 4 and 5).

The hydrometeorological conditions of a site were more effective at describing the variability in the occur-
rence of SSF across the NFEC than subsurface (volumetric water content) or atmospheric (VPD) conditions
alone. This result suggests that incorporating both atmospheric and subsurface moisture conditions is
important to describe the hydrologic response of a catchment. Often the relationship between moisture con-
ditions and hillslope runoff are threshold driven (e.g., Penna et al., 2011), representing fundamental transi-
tions between capillary and gravity driven drainage processes (Maneta et al., 2008; Torres et al., 1998;
Weyman, 1973). We observed a clear transition between sites where saturation was absent or present, which

corresponded with the hydrometeorological gradient of the catchment (occurring betweenHDI values of 7–
4 kPa). This finding agrees with several studies that highlighted the dominant control of site moisture on
hillslope runoff dynamics (Castillo et al., 2003; Hrnčíř et al., 2010; Mosley, 1982; Penna et al., 2011;
Woods et al., 1997; Woods & Rowe, 1996) and suggests that active zones of SSF are highly sensitive to small
changes in vapor pressures and soil moisture.

Generally hillslope positions with large contributing areas and low slopes had a more frequent and persis-
tent occurrence of SSF than sideslope and upslope locations. However, describing the probability of SSF with
hillslope position alone does not capture the spatial complexity of this important hydrologic response at the
catchment scale. This is due to the strong contribution of the climatic water balance in determining the
hydrometeorological conditions of the site (Figures 3 and 7a and Table 2), and the large spatial variability
of climatic forcing across catchments (Thornthwaite, 1948). Large areas of sustained SSF were largely
restricted to zones of low CWD (Figures 5 and 6b and 6d). Based on our spatial predictions (Figure 6d),

we found that ~19% of the catchment had saturation probabilities greater than 0.5 (P [SSF|HDI )] > 0.5),
and ~79% of that proportion occurred in regions of CWD < 52.9 mm/month, such as high elevation north-
erly aspects. This suggests that the majority of streamflow generation via hillslope connectivity pathways
(see Jencso et al., 2009, McGuire & McDonnell, 2010, and Tromp‐van Meerveld et al., 2015, for information
on hillslope‐stream connectivity) occurs where the CWD is low. This has significant implications for poten-
tial changes to the source areas of streamflow in semiarid headwater catchments due to the sensitivity of hill-
slope areas to changes in the CWD. For example, using this modeling framework and projections of future
changes to the climatic water balance (see Anderegg et al., 2015, for examples of CWD projections into 2100),
estimates of catchment‐scale streamflow generation resilience to climate change may be obtained (discussed
below).

5.5. Broader Implications

This study provides unique insights on the nested scales of influence of hydrologic processes across hillslopes
and larger catchments. We highlight that the superposition of the climatic water balance and hillslope topo-
graphy is critical to consider in order to understand hydrometeorology in complex terrain (Figure 7a). The
method employed in this study provides a transferable approach to estimate hydrometeorological conditions
across gradients of topographic complexity (i.e., catchments with highly dendritic morphology versus
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relatively low relief planar morphology) and contrasting climate. This simple approach is transferable due to
the quantification of the dynamic climatic water balance (which incorporates the temporal and spatial het-
erogeneity in water and energy inputs), in conjunction with our detailed understanding of the role of topo-
graphy in mediating microclimate and moisture redistribution. We also provide a framework for
understanding the spatial occurrence of SSF due to the strong influence of hydrometeorology.

Understanding how source areas of streamflow may respond to climate change is a primary concern for
watershed managers and practitioners around the world. Estimating temporal changes to active sources
areas of stream flow (Nippgen et al., 2015; Tague et al., 2009) represents a powerful method to evaluate
potential climate change impacts on catchment runoff. As an example, we applied a 15% increase to the
observed CWD (Figures 7a and 7b) in order to quantify potential climate change impacts on the spatial
extent of dominant streamflow source areas across the NFEC. While simple, this climate change estimate
is a reasonable and conservative approximation of potential changes in the water balance by the mid‐
century. Significant reductions of SSF in the low CWD regions of the basin (e.g., high elevation and northerly
aspects), which exceeded a 50% reduction in some locations (Figure 7b, scaled between 0 and 1), suggest that
catchments in semiarid environments are extremely sensitive to changes in the climatic water balance.
However, locations with large, convergent drainage areas have more attenuated responses to climate
change, representing regions of hydrologic resistance for streamflow generation (Figures 7a and 7b).
Nevertheless, the large spatial reduction of areas with active SSF is likely to cause considerable reductions
in headwater discharge andmay have implications beyond SSF. For example, groundwater recharge in these
basins may be severely affected by these changes in soil moisture and SSF, greatly impacting vital ground-
water resources downslope.

This study also has implications for understanding fine‐scale patterns in ecohydrology (Rodriguez‐Iturbe,
2000) and ecosystem sensitivity to climate change (Dobrowski, 2011). Fine spatial scale patterns of hydrome-
teorology are emerging as important drivers of variable conifer growth rates (Martin et al., 2017), due to the
strong influence of soil‐atmosphere moisture gradients on xylem water potentials and therefore intraannual
ecosystem productivity dynamics. Our results suggest that vegetation in convergent hillslope positions with
large drainage areas will have a greater capacity to buffer regional climate change due to the impact of micro-
climate and SSF (providing upslope hydrological subsidies to downslope positions) on moisture availability.
This result provides further physical evidence of the occurrence of spatial patterns of microrefugia in com-
plex terrain (Dobrowski, 2011; McLaughlin et al., 2017). While topographic patterns of vegetation structure
and productivity have been observed in many environments (Flores Cervantes et al., 2014; Hoylman et al.,
2018; Hwang et al., 2012; Ivanov et al., 2008; Swetnam et al., 2017), we provide direct, field‐based evidence
of the atmospheric and subsurface processes likely to drive such patterns. Regions of microrefugia should be
protected to promote biological adaptation to climate (Morelli et al., 2016) and provide pathways of ecosys-
tem connectivity to assist in the natural migration of species to more favorable climatic locations (Krosby
et al., 2010).

6. Conclusions

Site hydrometeorology is determined by processes that operate across catchment to subhillslope spatial
scales. Within one semiarid catchment, we quantified these nested scales of influence, measuring hydrome-
teorology (soil moisture and VPDs) and shallow subsurface flow dynamics across gradients of hillslope posi-
tion (intracatchment) and the climatic water balance continuum (intercatchment). We found strong
relationships linking these climatic and hydrologic processes, demonstrating the importance of the super-
position of the climatic water balance and complex topography on moisture availability. Intracatchment
topographic gradients (e.g., hillslope position) were especially important for determining site hydrome-
teorology when catchments were located within particularly arid portions of the climatic water balance
continuum (e.g., low elevation and southerly aspects). Conversely, intracatchment patterns became less
important in determining hydrometeorology when catchments were positioned in the hydric portion of
the climatic water balance continuum (e.g., high elevation and northerly aspects). We found that SSF
was almost entirely absent in the arid regions across the basin (even in areas with very large, convergent
drainage areas) but persistently occurred across both convergent and upslope positions (~70 m from the
adjacent hollow) in hydric regions of the catchment. Finally, we observed a strong spatial organization of
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SSF as a function of local hydrometeorology, emphasizing the dominant role of moisture conditions in
driving hydrologic connectivity.

References
Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological applications and modelling. International

Journal of Climatology, 33(1), 121–131. https://doi.org/10.1002/joc.3413
Ali, G., Birkel, C., Tetzlaff, D., Soulsby, C., McDonnell, J. J., & Tarolli, P. (2014). A comparison of wetness indices for the prediction of

observed connected saturated areas under contrasting conditions. Earth Surface Processes and Landforms, 39(3), 399–413. https://doi.
org/10.1002/esp.3506

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements‐FAO
Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.

Anderegg, W. R., Flint, A., Huang, C. Y., Flint, L., Berry, J. A., Davis, F. W., et al. (2015). Tree mortality predicted from drought‐induced
vascular damage. Nature Geoscience, 8(5), 367–371. https://doi.org/10.1038/ngeo2400

Anderson, M. G., & Burt, T. P. (1978). The role of topography in controlling throughflow generation. Earth Surface Processes and
Landforms, 3(4), 331–344. https://doi.org/10.1002/esp.3290030402

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed‐effects models using lme4. arXiv preprint arXiv:
1406.5823.

Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., & Baxter, R. (2008). Slope, aspect and climate: Spatially explicit and implicit models
of topographic microclimate in chalk grassland. Ecological Modelling, 216(1), 47–59. https://doi.org/10.1016/j.ecolmodel.2008.
04.010

Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Unmodèle à base physique de
zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Journal, 24(1), 43–69. https://doi.org/10.1080/
02626667909491834

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. (2009). Generalized linear mixed
models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135. https://doi.org/10.1016/j.
tree.2008.10.008

Brubaker, K. L., & Entekhabi, D. (1994). Nonlinear dynamics of water and energy balance in land‐atmosphere interaction. Ralph M.
Parsons Lab. Tech. Rep. 341, Massachusetts Institute of Technology.

Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus, 21(5), 611–619.
Burt, T. P., & Butcher, D. P. (1985). Topographic controls of soil moisture distributions. European Journal of Soil Science, 36(3), 469–486.

https://doi.org/10.1111/j.1365‐2389.1985.tb00351.x
Campbell, G. S., & Norman, J. M. (2012).An introduction to environmental biophysics. Berlin, Germany: Springer Science & Business Media.
Carey, S. K., & Woo, M. K. (2001). Spatial variability of hillslope water balance, Wolf Creek basin, subarctic Yukon. Hydrological Processes,

15(16), 3113–3132. https://doi.org/10.1002/hyp.319
Castelli, F., Rodriguez‐Iturbe, I., & Entekhabi, D. (1996). An analytical framework for the modelling of the spatial interaction between the

soil moisture and the atmosphere. Journal of Hydrology, 184(1–2), 19–34. https://doi.org/10.1016/0022‐1694(95)02966‐4
Castillo, V. M., Gomez‐Plaza, A., & Martınez‐Mena, M. (2003). The role of antecedent soil water content in the runoff response of semiarid

catchments: A simulation approach. Journal of Hydrology, 284(1–4), 114–130. https://doi.org/10.1016/S0022‐1694(03)00264‐6
Chen, J., & Kumar, P. (2001). Topographic influence on the seasonal and interannual variation of water and energy balance of basins in

North America. Journal of Climate, 14(9), 1989–2014. https://doi.org/10.1175/1520‐0442(2001)014<1989:TIOTSA>2.0.CO;2
Chen, J., Saunders, S. C., Crow, T. R., Naiman, R. J., Brosofske, K. D., Mroz, G. D., et al. (1999). Microclimate in forest ecosystem and

landscape ecology: Variations in local climate can be used to monitor and compare the effects of different management regimes.
Bioscience, 49(4), 288–297. https://doi.org/10.2307/1313612

Clements, C. B., Whiteman, C. D., & Horel, J. D. (2003). Cold‐air‐pool structure and evolution in a mountain basin: Peter Sinks, Utah.
Journal of Applied Meteorology, 42(6), 752–768. https://doi.org/10.1175/1520‐0450(2003)042<0752:CSAEIA>2.0.CO;2

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., et al. (2015). System for Automated Geoscientific Analyses (SAGA) v.
2.1.4. Geoscientific Model Development, 8, 1991–2007. https://doi.org/10.5194/gmd‐8‐1991‐2015

Core Team, R. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
2016

De Frenne, P., Rodríguez‐Sánchez, F., Coomes, D. A., Baeten, L., Verstraeten, G., Vellend, M., et al. (2013). Microclimate moderates plant
responses to macroclimate warming. Proceedings of the National Academy of Sciences, 110(46), 18,561–18,565. https://doi.org/10.1073/
pnas.1311190110

Delworth, T., & Manabe, S. (1989). The influence of soil wetness on near‐surface atmospheric variability. Journal of Climate, 2(12),
1447–1462. https://doi.org/10.1175/1520‐0442(1989)002<1447:TIOSWO>2.0.CO;2

Detty, J. M., & McGuire, K. J. (2010). Topographic controls on shallow groundwater dynamics: Implications of hydrologic connectivity
between hillslopes and riparian zones in a till mantled catchment. Hydrological Processes, 24(16), 2222–2236. https://doi.org/10.1002/
hyp.7656

Dingman, S. L. (2015). Physical hydrology. Prentice Hall, New York: Waveland press.
Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The influence of terrain on climate. Global Change Biology, 17(2), 1022–1035.

https://doi.org/10.1111/j.1365‐2486.2010.02263.x
Dunne, T., & Black, R. D. (1970). Partial area contributions to storm runoff in a small New England watershed.Water Resources Research,

6(5), 1296–1311. https://doi.org/10.1029/WR006i005p01296
Entekhabi, D., Rodriguez‐Iturbe, I., & Bras, R. L. (1992). Variability in large‐scale water balance with land surface‐atmosphere interaction.

Journal of Climate, 5(8), 798–813. https://doi.org/10.1175/1520‐0442(1992)005<0798:VILSWB>2.0.CO;2
Entekhabi, D., Rodriguez‐Iturbe, I., & Castelli, F. (1996). Mutual interaction of soil moisture state and atmospheric processes. Journal of

Hydrology, 184(1–2), 3–17. https://doi.org/10.1016/0022‐1694(95)02965‐6
Flint, A. L., & Childs, S. W. (1987). Calculation of solar radiation in mountainous terrain. Agricultural and Forest Meteorology, 40(3),

233–249. https://doi.org/10.1016/0168‐1923(87)90061‐X
Flint, L. E., & Flint, A. L. (2008). A basin‐scale approach to estimating stream temperatures of tributaries to the Lower Klamath River,

California. Journal of Environmental Quality, 37(1), 57–68. https://doi.org/10.2134/jeq2006.0341

10.1029/2018WR023302Water Resources Research

HOYLMAN ET AL. 2386

Acknowledgments
This work was made possible by a
USDA NIFA McIntire Stennis award
233327 to Jencso, NSF grants DEB‐
1457749 and DEB‐1457720 to Jencso
and Hu, and by a NASA applied science
program Wildland Fire award
(agreement NNH11ZDA001N‐FIRES)
awarded to Holden. Additional support
was provided by NSF EPSCoR through
the Montana Institute on Ecosystems.
The authors appreciate extensive
logistic support from the staff of the
Lubrecht Experimental Forest,
especially Forest Manager, FrankMaus.
We would like to thank the anonymous
reviewers for their thoughtful
comments and suggestions, which
improved this manuscript. Data used
for the analyses presented in this
manuscript are available in Data Set S1.

https://doi.org/10.1002/joc.3413
https://doi.org/10.1002/esp.3506
https://doi.org/10.1002/esp.3506
https://doi.org/10.1038/ngeo2400
https://doi.org/10.1002/esp.3290030402
https://doi.org/10.1016/j.ecolmodel.2008.04.010
https://doi.org/10.1016/j.ecolmodel.2008.04.010
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1016/j.tree.2008.10.008
https://doi.org/10.1016/j.tree.2008.10.008
https://doi.org/10.1111/j.1365-2389.1985.tb00351.x
https://doi.org/10.1002/hyp.319
https://doi.org/10.1016/0022-1694(95)02966-4
https://doi.org/10.1016/S0022-1694(03)00264-6
https://doi.org/10.1175/1520-0442(2001)014%3c1989:TIOTSA%3e2.0.CO;2
https://doi.org/10.2307/1313612
https://doi.org/10.1175/1520-0450(2003)042%3c0752:CSAEIA%3e2.0.CO;2
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1073/pnas.1311190110
https://doi.org/10.1073/pnas.1311190110
https://doi.org/10.1175/1520-0442(1989)002%3c1447:TIOSWO%3e2.0.CO;2
https://doi.org/10.1002/hyp.7656
https://doi.org/10.1002/hyp.7656
https://doi.org/10.1111/j.1365-2486.2010.02263.x
https://doi.org/10.1029/WR006i005p01296
https://doi.org/10.1175/1520-0442(1992)005%3c0798:VILSWB%3e2.0.CO;2
https://doi.org/10.1016/0022-1694(95)02965-6
https://doi.org/10.1016/0168-1923(87)90061-X
https://doi.org/10.2134/jeq2006.0341


Flores Cervantes, J. H., Istanbulluoglu, E., Vivoni, E. R., Holifield Collins, C. D., & Bras, R. L. (2014). A geomorphic perspective on terrain‐
modulated organization of vegetation productivity: Analysis in two semiarid grassland ecosystems in southwestern United States.
Ecohydrology, 7(2), 242–257. https://doi.org/10.1002/eco.1333

Ford, T. W., Quiring, S. M., Frauenfeld, O. W., & Rapp, A. D. (2015). Synoptic conditions related to soil moisture‐atmosphere interactions
and unorganized convection in Oklahoma. Journal of Geophysical Research: Atmospheres, 120, 11,519–11,535. https://doi.org/10.1002/
2015JD023975

Fox, J., & Weisberg, S. (2011). An R companion to applied regression. Thousand Oaks, California: Sage Publications.
Freeze, R. A. (1972). Role of subsurface flow in generating surface runoff: 1. Base flow contributions to channel flow. Water Resources

Research, 8(3), 609–623. https://doi.org/10.1029/WR008i003p00609
Fu, P., & Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and forestry. Computers and Electronics in

Agriculture, 37(1–3), 25–35. https://doi.org/10.1016/S0168‐1699(02)00115‐1
Gómez‐Plaza, A., Alvarez‐Rogel, J., Albaladejo, J., & Castillo, V. M. (2000). Spatial patterns and temporal stability of soil moisture across a

range of scales in a semi‐arid environment. Hydrological Processes, 14(7), 1261–1277. https://doi.org/10.1002/(SICI)1099‐
1085(200005)14:7<1261::AID‐HYP40>3.0.CO;2‐D

Grant, L., Seyfried, M., & McNamara, J. (2004). Spatial variation and temporal stability of soil water in a snow‐dominated, mountain
catchment. Hydrological Processes, 18(18), 3493–3511. https://doi.org/10.1002/hyp.5798

Grayson, R. B., Western, A. W., Chiew, F. H., & Blöschl, G. (1997). Preferred states in spatial soil moisture patterns: Local and nonlocal
controls. Water Resources Research, 33(12), 2897–2908. https://doi.org/10.1029/97WR02174

Gu, L., Meyers, T., Pallardy, S. G., Hanson, P. J., Yang, B., Heuer, M., et al. (2006). Direct and indirect effects of atmospheric conditions and
soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. Journal of Geophysical Research,
111, D16102. https://doi.org/10.1029/2006JD007161

Hawthorne, S., & Miniat, C. F. (2018). Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology,
11(1), e1825. https://doi.org/10.1002/eco.1825

Holden, Z. A., Swanson, A., Klene, A. E., Abatzoglou, J. T., Dobrowski, S. Z., Cushman, S. A., et al. (2016). Development of high‐resolution
(250 m) historical daily gridded air temperature data using reanalysis and distributed sensor networks for the US Northern Rocky
Mountains. International Journal of Climatology, 36(10), 3620–3632. https://doi.org/10.1002/joc.4580

Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J. W., et al. (2018). Decreasing fire season precipitation increased
recent western US forest wildfire activity. Proceedings of the National Academy of Sciences, 115(36), E8349–E8357. https://doi.org/
10.1073/pnas.1802316115

Hoylman, Z. H., Jencso, K. G., Hu, J., Martin, J. T., Holden, Z. A., Seielstad, C. A., & Rowell, E. M. (2018). Hillslope topography mediates
spatial patterns of ecosystem sensitivity to climate. Journal of Geophysical Research: Biogeosciences, 123, 353–371. https://doi.org/
10.1002/2017JG004108

Hrnčíř, M., Šanda, M., Kulasová, A., & Císlerová, M. (2010). Runoff formation in a small catchment at hillslope and catchment scales.
Hydrological Processes, 24(16), 2248–2256. https://doi.org/10.1002/hyp.7614

Hwang, T., Band, L. E., Vose, J. M., & Tague, C. (2012). Ecosystem processes at the watershed scale: Hydrologic vegetation gradient as an
indicator for lateral hydrologic connectivity of headwater catchments. Water Resources Research, 48, W06514. https://doi.org/10.1029/
2011WR011301

Ivanov, V. Y., Bras, R. L., & Vivoni, E. R. (2008). Vegetation‐hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic
approach to modeling dynamic feedbacks. Water Resources Research, 44, W03429. https://doi.org/10.1029/2006WR005588

James, A. L., & Roulet, N. T. (2009). Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff
generation in small forest catchments. Journal of Hydrology, 377(3–4), 351–366. https://doi.org/10.1016/j.jhydrol.2009.08.039

Jencso, K. G., & McGlynn, B. L. (2011). Hierarchical controls on runoff generation: Topographically driven hydrologic connectivity,
geology, and vegetation. Water Resources Research, 47, W12528. https://doi.org/10.1029/2011WR010666

Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K. E., & Marshall, L. A. (2009). Hydrologic connectivity between
landscapes and streams: Transferring reach‐and plot‐scale understanding to the catchment scale.Water Resources Research, 45, W04428.
https://doi.org/10.1029/2008WR007225

Jiang, Q. (2003). Moist dynamics and orographic precipitation. Tellus A, 55(4), 301–316. https://doi.org/10.1034/j.1600‐0870.2003.00025.x
Kachanoski, R. G., & Jong, E. (1988). Scale dependence and the temporal persistence of spatial patterns of soil water storage. Water

Resources Research, 24(1), 85–91. https://doi.org/10.1029/WR024i001p00085
Krosby, M., Tewksbury, J., Haddad, N. M., & Hoekstra, J. (2010). Ecological connectivity for a changing climate. Conservation Biology,

24(6), 1686–1689. https://doi.org/10.1111/j.1523‐1739.2010.01585.x
Langston, A. L., Tucker, G. E., Anderson, R. S., & Anderson, S. P. (2015). Evidence for climatic and hillslope‐aspect controls on vadose zone

hydrology and implications for saprolite weathering. Earth Surface Processes and Landforms, 40(9), 1254–1269.
Lin, H. (2006). Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the Shale Hills Catchment.

Vadose Zone Journal, 5(1), 317–340. https://doi.org/10.2136/vzj2005.0058
Looker, N., Martin, J., Hoylman, Z., Jencso, K., & Hu, J. (2018). Diurnal and seasonal coupling of conifer sap flow and vapour pressure

deficit across topoclimatic gradients in a subalpine catchment. Ecohydrology, 11(7), e1994. https://doi.org/10.1002/eco.1994
Maneta, M., Schnabel, S., & Jetten, V. (2008). Continuous spatially distributed simulation of surface and subsurface hydrological processes

in a small semiarid catchment. Hydrological Processes, 22(13), 2196–2214. https://doi.org/10.1002/hyp.6817
Maneta, M. P., & Silverman, N. L. (2013). A spatially distributed model to simulate water, energy, and vegetation dynamics using infor-

mation from regional climate models. Earth Interactions, 17(11), 1–44. https://doi.org/10.1175/2012EI000472.1
Martin, J., Looker, N., Hoylman, Z., Jencso, K., & Hu, J. (2017). Hydrometeorology organizes intra‐annual patterns of tree growth across

time, space and species in a montane watershed. New Phytologist, 215(4), 1387–1398. https://doi.org/10.1111/nph.14668
Maxwell, R. M., Chow, F. K., & Kollet, S. J. (2007). The groundwater–land‐surface–atmosphere connection: Soil moisture effects on the

atmospheric boundary layer in fully‐coupled simulations. Advances in Water Resources, 30(12), 2447–2466. https://doi.org/10.1016/j.
advwatres.2007.05.018

McCulloch, C. E., & Neuhaus, J. M. (2001). Generalized linear mixed models. Hoboken, New Jersey: John Wiley & Sons, Ltd.
McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., et al. (2007). Moving beyond heterogeneity and

process complexity: A new vision for watershed hydrology. Water Resources Research, 43, W07301. https://doi.org/10.1029/
2006WR005467

McGuire, K. J., &McDonnell, J. J. (2010). Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities.
Water Resources Research, 46, W10543. https://doi.org/10.1029/2010WR009341

10.1029/2018WR023302Water Resources Research

HOYLMAN ET AL. 2387

https://doi.org/10.1002/eco.1333
https://doi.org/10.1002/2015JD023975
https://doi.org/10.1002/2015JD023975
https://doi.org/10.1029/WR008i003p00609
https://doi.org/10.1016/S0168-1699(02)00115-1
https://doi.org/10.1002/(SICI)1099-1085(200005)14:7%3c1261::AID-HYP40%3e3.0.CO;2-D
https://doi.org/10.1002/(SICI)1099-1085(200005)14:7%3c1261::AID-HYP40%3e3.0.CO;2-D
https://doi.org/10.1002/hyp.5798
https://doi.org/10.1029/97WR02174
https://doi.org/10.1029/2006JD007161
https://doi.org/10.1002/eco.1825
https://doi.org/10.1002/joc.4580
https://doi.org/10.1073/pnas.1802316115
https://doi.org/10.1073/pnas.1802316115
https://doi.org/10.1002/2017JG004108
https://doi.org/10.1002/2017JG004108
https://doi.org/10.1002/hyp.7614
https://doi.org/10.1029/2011WR011301
https://doi.org/10.1029/2011WR011301
https://doi.org/10.1029/2006WR005588
https://doi.org/10.1016/j.jhydrol.2009.08.039
https://doi.org/10.1029/2011WR010666
https://doi.org/10.1029/2008WR007225
https://doi.org/10.1034/j.1600-0870.2003.00025.x
https://doi.org/10.1029/WR024i001p00085
https://doi.org/10.1111/j.1523-1739.2010.01585.x
https://doi.org/10.2136/vzj2005.0058
https://doi.org/10.1002/eco.1994
https://doi.org/10.1002/hyp.6817
https://doi.org/10.1175/2012EI000472.1
https://doi.org/10.1111/nph.14668
https://doi.org/10.1016/j.advwatres.2007.05.018
https://doi.org/10.1016/j.advwatres.2007.05.018
https://doi.org/10.1029/2006WR005467
https://doi.org/10.1029/2006WR005467
https://doi.org/10.1029/2010WR009341


McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., & Seibert, J. (2005). The role of topography on
catchment‐scale water residence time. Water Resources Research, 41, W05002. https://doi.org/10.1029/2004WR003657

McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., & Thompson, S. E. (2017). Hydrologic refugia, plants, and climate
change. Global change biology, (Vol. 23, pp. 2941–2961). https://doi.org/10.1111/gcb.13629

McNamara, J. P., Chandler, D., Seyfried, M., & Achet, S. (2005). Soil moisture states, lateral flow, and streamflow generation in a semi‐arid,
snowmelt‐driven catchment. Hydrological Processes, 19(20), 4023–4038. https://doi.org/10.1002/hyp.5869

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., & Coauthors (2006). North American Regional Reanalysis. Bulletin of the American
Meteorological Society, 87(3), 343–360. https://doi.org/10.1175/BAMS‐87‐3‐343

Minder, J. R., Mote, P. W., & Lundquist, J. D. (2010). Surface temperature lapse rates over complex terrain: Lessons from the Cascade
Mountains. Journal of Geophysical Research, 115, D14122. https://doi.org/10.1029/2009JD013493

Mohanty, B. P., & Skaggs, T. H. (2001). Spatio‐temporal evolution and time‐stable characteristics of soil moisture within remote sensing
footprints with varying soil, slope, and vegetation. Advances in Water Resources, 24(9–10), 1051–1067. https://doi.org/10.1016/S0309‐
1708(01)00034‐3

Montgomery, D. R., & Dietrich, W. E. (2002). Runoff generation in a steep, soil‐mantled landscape.Water Resources Research, 38(9), 1168.
https://doi.org/10.1029/2001WR000822

Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological
applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103

Morelli, T. L., Daly, C., Dobrowski, S. Z., Dulen, D. M., Ebersole, J. L., Jackson, S. T., et al. (2016). Managing climate change refugia for
climate adaptation. PLoS ONE, 11(8), e0159909. https://doi.org/10.1371/journal.pone.0159909

Mosley, M. P. (1982). Subsurface flow velocities through selected forest soils, South Island, New Zealand. Journal of Hydrology, 55(1–4),
65–92. https://doi.org/10.1016/0022‐1694(82)90121‐4

Nippgen, F., McGlynn, B. L., & Emanuel, R. E. (2015). The spatial and temporal evolution of contributing areas.Water Resources Research,
51, 4550–4573. https://doi.org/10.1002/2014WR016719

Nychka, D., Furrer, R., Paige, J., & Sain, S. (2017). Fields: Tools for spatial data. 2015. URL http://CRAN. R‐project. org/package= fields. R
package version, 7.

Oliphant, A. J., Spronken‐Smith, R. A., Sturman, A. P., & Owens, I. F. (2003). Spatial variability of surface radiation fluxes in mountainous
terrain. Journal of Applied Meteorology, 42(1), 113–128. https://doi.org/10.1175/1520‐0450(2003)042<0113:SVOSRF>2.0.CO;2

Penna, D., Tromp‐vanMeerveld, H. J., Gobbi, A., Borga, M., & Dalla Fontana, G. (2011). The influence of soil moisture on threshold runoff
generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15(3), 689–702. https://doi.org/10.5194/
hess‐15‐689‐2011

Raz‐Yaseef, N., Yakir, D., Schiller, G., & Cohen, S. (2012). Dynamics of evapotranspiration partitioning in a semi‐arid forest as affected by
temporal rainfall patterns. Agricultural and Forest Meteorology, 157, 77–85. https://doi.org/10.1016/j.agrformet.2012.01.015

Renner, M., Hassler, S. K., Blume, T., Weiler, M., Hildebrandt, A., Guderle, M., et al. (2016). Dominant controls of transpiration along a
hillslope transect inferred from ecohydrological measurements and thermodynamic limits. Hydrology and Earth System Sciences, 20(5),
2063–2083. https://doi.org/10.5194/hess‐20‐2063‐2016

Rinderer, M., VanMeerveld, H. J., & Seibert, J. (2014). Topographic controls on shallow groundwater levels in a steep, prealpine catchment:
When are the TWI assumptions valid? Water Resources Research, 50, 6067–6080. https://doi.org/10.1002/2013WR015009

Rodriguez‐Iturbe, I. (2000). Ecohydrology: A hydrologic perspective of climate‐soil‐vegetation dynamics. Water Resources Research, 36(1),
3–9. https://doi.org/10.1029/1999WR900210

Roe, G. H. (2005). Orographic precipitation. Annual Review of Earth and Planetary Sciences, 33(1), 645–671. https://doi.org/10.1146/
annurev.earth.33.092203.122541

Rolland, C. (2003). Spatial and seasonal variations of air temperature lapse rates in Alpine regions. Journal of Climate, 16(7), 1032–1046.
https://doi.org/10.1175/1520‐0442(2003)016<1032:SASVOA>2.0.CO;2

Rowell, E., Seielstad, C., Goodburn, J., & Queen, L. (2009, October). Estimating plot‐scale biomass in a western North American mixed‐
conifer forest from lidar‐derived tree stems. In Proc. SilviLaser Conf (pp. 14‐16).

Royer, P. D., Breshears, D. D., Zou, C. B., Villegas, J. C., Cobb, N. S., & Kurc, S. A. (2012). Density‐dependent ecohydrological effects of
piñon–juniper woody canopy cover on soil microclimate and potential soil evaporation. Rangeland Ecology &Management, 65(1), 11–20.
https://doi.org/10.2111/REM‐D‐11‐00007.1

Ruel, J. C., Pin, D., & Cooper, K. (1998). Effect of topography on wind behaviour in a complex terrain. Forestry: An International Journal of
Forest Research, 71(3), 261–265. https://doi.org/10.1093/forestry/71.3.261

Seibert, J., Bishop, K., Rodhe, A., & McDonnell, J. J. (2003). Groundwater dynamics along a hillslope: A test of the steady state hypothesis.
Water Resources Research, 39(1), 1014. https://doi.org/10.1029/2002WR001404

Seibert, J., & McGlynn, B. L. (2007). A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital
elevation models. Water Resources Research, 43, W04501. https://doi.org/10.1029/2006WR005128

Shevenell, L. (1999). Regional potential evapotranspiration in arid climates based on temperature, topography and calculated solar
radiation. Hydrological Processes, 13(4), 577–596. https://doi.org/10.1002/(SICI)1099‐1085(199903)13:4<577::AID‐HYP757>
3.0.CO;2‐P

Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., & Shimizu, T. (2000). Stormflow generation in steep forested headwaters:
A linked hydrogeomorphic paradigm. Hydrological Processes, 14(3), 369–385. https://doi.org/10.1002/(SICI)1099‐
1085(20000228)14:3<369::AID‐HYP943>3.0.CO;2‐P

Sperry, J. S., Stiller, V., & Hacke, U. G. (2003). Xylem hydraulics and the soil–plant–atmosphere continuum. Agronomy Journal, 95(6),
1362–1370. https://doi.org/10.2134/agronj2003.1362

Swetnam, T. L., Brooks, P. D., Barnard, H. R., Harpold, A. A., & Gallo, E. L. (2017). Topographically driven differences in energy and water
constrain climatic control on forest carbon sequestration. Ecosphere, 8(4). https://doi.org/10.1002/ecs2.1797

Tague, C., Heyn, K., & Christensen, L. (2009). Topographic controls on spatial patterns of conifer transpiration and net primary produc-
tivity under climate warming in mountain ecosystems. Ecohydrology, 2(4), 541–554. https://doi.org/10.1002/eco.88

Tenenbaum, D. E., Band, L. E., Kenworthy, S. T., & Tague, C. L. (2006). Analysis of soil moisture patterns in forested and suburban
catchments in Baltimore, Maryland, using high‐resolution photogrammetric and LIDAR digital elevation datasets. Hydrological
Processes, 20(2), 219–240. https://doi.org/10.1002/hyp.5895

Tetens, O. (1930). Uber einige meteorologische Begriffe. Zeitschrift für Geophysik, 6, 297–309.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. https://doi.org/

10.2307/210739

10.1029/2018WR023302Water Resources Research

HOYLMAN ET AL. 2388

https://doi.org/10.1029/2004WR003657
https://doi.org/10.1111/gcb.13629
https://doi.org/10.1002/hyp.5869
https://doi.org/10.1175/BAMS-87-3-343
https://doi.org/10.1029/2009JD013493
https://doi.org/10.1016/S0309-1708(01)00034-3
https://doi.org/10.1016/S0309-1708(01)00034-3
https://doi.org/10.1029/2001WR000822
https://doi.org/10.1002/hyp.3360050103
https://doi.org/10.1371/journal.pone.0159909
https://doi.org/10.1016/0022-1694(82)90121-4
https://doi.org/10.1002/2014WR016719
https://doi.org/10.1175/1520-0450(2003)042%3c0113:SVOSRF%3e2.0.CO;2
https://doi.org/10.5194/hess-15-689-2011
https://doi.org/10.5194/hess-15-689-2011
https://doi.org/10.1016/j.agrformet.2012.01.015
https://doi.org/10.5194/hess-20-2063-2016
https://doi.org/10.1002/2013WR015009
https://doi.org/10.1029/1999WR900210
https://doi.org/10.1146/annurev.earth.33.092203.122541
https://doi.org/10.1146/annurev.earth.33.092203.122541
https://doi.org/10.1175/1520-0442(2003)016%3c1032:SASVOA%3e2.0.CO;2
https://doi.org/10.2111/REM-D-11-00007.1
https://doi.org/10.1093/forestry/71.3.261
https://doi.org/10.1029/2002WR001404
https://doi.org/10.1029/2006WR005128
https://doi.org/10.1002/(SICI)1099-1085(199903)13:4%3c577::AID-HYP757%3e3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1085(199903)13:4%3c577::AID-HYP757%3e3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3%3c369::AID-HYP943%3e3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3%3c369::AID-HYP943%3e3.0.CO;2-P
https://doi.org/10.2134/agronj2003.1362
https://doi.org/10.1002/ecs2.1797
https://doi.org/10.1002/eco.88
https://doi.org/10.1002/hyp.5895
https://doi.org/10.2307/210739
https://doi.org/10.2307/210739


Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission
lines. Water Resources Research, 16(3), 574–582. https://doi.org/10.1029/WR016i003p00574

Torres, R., Dietrich, W. E., Montgomery, D. R., Anderson, S. P., & Loague, K. (1998). Unsaturated zone processes and the hydrologic
response of a steep, unchanneled catchment. Water Resources Research, 34(8), 1865–1879. https://doi.org/10.1029/98WR01140

Troch, P. A., Carrillo, G. A., Heidbüchel, I., Rajagopal, S., Switanek, M., Volkmann, T. H., & Yaeger, M. (2009). Dealing with landscape
heterogeneity in watershed hydrology: A review of recent progress toward new hydrological theory. Geography Compass, 3(1), 375–392.
https://doi.org/10.1111/j.1749‐8198.2008.00186.x

Troch, P. A., Paniconi, C., & van Loon, E. E. (2003). Hillslope‐storage Boussinesq model for subsurface flow and variable source areas along
complex hillslopes: 1 Formulation and characteristic response. Water Resources Research, 39(11), 1316. https://doi.org/10.1029/
2002WR001728

Tromp‐van Meerveld, H. J., & McDonnell, J. J. (2005). Comment to “Spatial correlation of soil moisture in small catchments and its rela-
tionship to dominant spatial hydrological processes, Journal of Hydrology 286: 113–134”. Journal of Hydrology, 303(1–4), 307–312.
https://doi.org/10.1016/j.jhydrol.2004.09.002

Tromp‐van Meerveld, H. J., Seibert, J., & Peters, N. E. (2015). Hillslope–riparian‐stream connectivity and flow directions at the Panola
Mountain Research Watershed. Hydrological Processes, 29(16), 3556–3574. https://doi.org/10.1002/hyp.10508

U.S. Department of Agriculture, National Cooperative Soil Survey. (2001). Official soil series descriptions: Lubrecht Series (Revision No.
NRS‐CNG‐JAL). Retrieved from https://soilseries.sc.egov.usda.gov/OSD_Docs/L/LUBRECHT.html

Venables, W. N., & Ripley, B. D. (2002).Modern applied statistics with S, (4th ed.). New York: Springer. https://doi.org/10.1007/978‐0‐387‐
21706‐2

Vivoni, E. R., Gutiérrez‐Jurado, H. A., Aragón, C. A., Méndez‐Barroso, L. A., Rinehart, A. J., Wyckoff, R. L., et al. (2007). Variation of
hydrometeorological conditions along a topographic transect in northwestern Mexico during the North American monsoon. Journal of
Climate, 20(9), 1792–1809. https://doi.org/10.1175/JCLI4094.1

Wagenmakers, E. J., & Farrell, S. (2004). AICmodel selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192–196. https://
doi.org/10.3758/BF03206482

Western, A. W., Blöschl, G., & Grayson, R. B. (1998). Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment.
Journal of Hydrology, 205(1–2), 20–37. https://doi.org/10.1016/S0022‐1694(97)00142‐X

Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R., & McMahon, T. A. (1999). Observed spatial organization of soil moisture and
its relation to terrain indices. Water Resources Research, 35(3), 797–810. https://doi.org/10.1029/1998WR900065

Western, A. W., Zhou, S. L., Grayson, R. B., McMahon, T. A., Blöschl, G., &Wilson, D. J. (2004). Spatial correlation of soil moisture in small
catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, 286(1–4), 113–134. https://doi.org/
10.1016/j.jhydrol.2003.09.014

Weyman, D. R. (1973). Measurements of the downslope flow of water in a soil. Journal of Hydrology, 20(3), 267–288. https://doi.org/
10.1016/0022‐1694(73)90065‐6

Williams, C. J., McNamara, J. P., & Chandler, D. G. (2009). Controls on the temporal and spatial variability of soil moisture in a moun-
tainous landscape: The signature of snow and complex terrain. Hydrology and Earth System Sciences, 13(7), 1325–1336. https://doi.org/
10.5194/hess‐13‐1325‐2009

Woods, R. (2003). The relative roles of climate, soil, vegetation and topography in determining seasonal and long‐term catchment
dynamics. Advances in Water Resources, 26(3), 295–309. https://doi.org/10.1016/S0309‐1708(02)00164‐1

Woods, R., & Rowe, L. (1996). The changing spatial variability of subsurface flow across a hillside. Journal of Hydrology New Zealand, 35(1),
51–86.

Woods, R. A., Sivapalan, M., & Robinson, J. S. (1997). Modeling the spatial variability of subsurface runoff using a topographic index.Water
Resources Research, 33(5), 1061–1073. https://doi.org/10.1029/97WR00232

Yoshino, M. M. (1984). Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night.
GeoJournal, 8(3), 235–250. https://doi.org/10.1007/BF00446473

Zhang, Y., Wei, H., & Nearing, M. A. (2011). Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of
southeastern Arizona. Hydrology and Earth System Sciences, 15(10), 3171–3179. https://doi.org/10.5194/hess‐15‐3171‐2011

10.1029/2018WR023302Water Resources Research

HOYLMAN ET AL. 2389

https://doi.org/10.1029/WR016i003p00574
https://doi.org/10.1029/98WR01140
https://doi.org/10.1111/j.1749-8198.2008.00186.x
https://doi.org/10.1029/2002WR001728
https://doi.org/10.1029/2002WR001728
https://doi.org/10.1016/j.jhydrol.2004.09.002
https://doi.org/10.1002/hyp.10508
https://soilseries.sc.egov.usda.gov/OSD_Docs/L/LUBRECHT.html
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.1175/JCLI4094.1
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://doi.org/10.1016/S0022-1694(97)00142-X
https://doi.org/10.1029/1998WR900065
https://doi.org/10.1016/j.jhydrol.2003.09.014
https://doi.org/10.1016/j.jhydrol.2003.09.014
https://doi.org/10.1016/0022-1694(73)90065-6
https://doi.org/10.1016/0022-1694(73)90065-6
https://doi.org/10.5194/hess-13-1325-2009
https://doi.org/10.5194/hess-13-1325-2009
https://doi.org/10.1016/S0309-1708(02)00164-1
https://doi.org/10.1029/97WR00232
https://doi.org/10.1007/BF00446473
https://doi.org/10.5194/hess-15-3171-2011


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


