26 research outputs found

    Litter Size Variation in Hypothalamic Gene Expression Determines Adult Metabolic Phenotype in Brandt's Voles (Lasiopodomys brandtii)

    Get PDF
    Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12) and small (3-4) litter sizes, of Brandt's voles (Lasiopodomys brandtii), a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb) mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3) mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP) mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood

    Does the Early Social Environment Affect Structure and Consistency of Personality in Wild-Type Male Rats?

    Get PDF
    Animal personality has been extensively studied from a functional and evolutionary point of view. Less attention has been paid to the development of personality, its phenotypic plasticity, and the influence of manipulation of early environmental factors. Here we describe the effects of manipulating the sex ratio of the litter, at postnatal day (pnd) 3, in wild-type rats, on personality traits in adulthood. We measured the treatment effects on aggression, defensive burying, and open field behavior at pnd 90 and 120, as well as on their contextual generality, and stability over time (differential and structural consistency). Main effects of litter composition were found on open field behavior at pnd 120 but not on the other behaviors. Since correlations between behaviors changed over time irrespective of the specific treatment, whereas in previous studies on unmanipulated litters this was not the case we suggest that early handling may disrupt adult personality traits. Overall the data indicate that personality is less stable over time that often assumed, having both proximate and ultimate implications.

    Being suckled in a large litter mitigates the effects of early-life stress on hypothalamic-pituitary-adrenal axis function in the male rat

    No full text
    The perinatal environment influences stress responses in the long-term, as does body composition. Male rats suckled in large litters, where they have reduced access to milk and attention from the dam, are less anxious and have attenuated hypothalamic-pituitary-adrenal (HPA) axis responses to stress compared to rats from control litters. In the present study, we investigated whether this early-life environment can also ameliorate anxiety and HPA axis function in rats prone to be stress-sensitive. We conducted these experiments in male rats from control litters (n = 12) or large litters (n = 20). Half were given 24 h of maternal separation on postnatal day 10 to induce HPA axis hyperactivity; the remainder staying undisturbed with their dam. When the rats reached adulthood, we examined behavioural indices of anxiety (elevated plus maze) and depression (Porsolt's forced swim test) under basal conditions and after 15 min of restraint stress. We also examined neuronal activation in the paraventricular nucleus of the hypothalamus (PVN) as an index of HPA axis function. Being suckled in a large litter led to a significantly attenuated PVN response to stress in adulthood. Maternal separation strongly exacerbated the stress-induced increase in PVN neuronal activation in control rats but did not affect the PVN response in large-litter rats. Immobility in the forced swim after restraint was also exacerbated in neonatally maternally separated control rats but not in those from large litters. Our findings show that being suckled in large litters mitigates the effects of early-life stress on HPA axis function and indices of depression in the rat
    corecore