145 research outputs found

    Prehension and perception of size in left visual neglect

    Get PDF
    Right hemisphere damaged patients with and without left visual neglect, and age-matched controls had objects of various sizes presented within left or right body hemispace. Subjects were asked to estimate the objects’ sizes or to reach out and grasp them, in order to assess visual size processing in perceptual-experiential and action-based contexts respectively. No impairments of size processing were detected in the prehension performance of the neglect patients but a generalised slowing of movement was observed, associated with an extended deceleration phase. Additionally both patient groups reached maximum grip aperture relatively later in the movement than did controls. For the estimation task it was predicted that the left visual neglect group would systematically underestimate the sizes of objects presented within left hemispace but no such abnormalities were observed. Possible reasons for this unexpected null finding are discussed

    Пам’яті Ірини Миколаївни Алексєєвої

    Get PDF
    На 77-му ропі життя, 9 лютого 2011 р. відійшла від нас знана і шанована людина, доктор біологічних наук, завідувач відділу імунології і цитотоксичних сироваток Інституту фізіології ім. О.О. Богомольця НАН України, Ірина Миколаївна Алексєєва

    Grasping the past: delay can improve visuomotor performance

    Get PDF
    “Optic ataxia” is caused by damage to the human posterior parietal cortex (PPC). It disrupts all components of a visually guided prehension movement, not only the transport of the hand toward an object's location [1], but also the in-flight finger movements pretailored to the metric properties of the object [2, 3 and 4]. Like previous cases [4 and 5], our patient (I.G.) was quite unable to open her handgrip appropriately when directly reaching out to pick up objects of different sizes. When first tested, she failed to do this even when she had previewed the target object 5 s earlier. Yet despite this deficit in “real” grasping, we found, counterintuitively, that I.G. showed good grip scaling when “pantomiming” a grasp for an object seen earlier but no longer present. We then found that, after practice, I.G. became able to scale her handgrip when grasping a real target object that she had previewed earlier. By interposing catch trials in which a different object was covertly substituted for the original object during the delay between preview and grasp, we found that I.G. was now using memorized visual information to calibrate her real grasping movements. These results provide new evidence that “off-line” visuomotor guidance can be provided by networks independent of the PPC

    Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals

    Get PDF
    This is the final version of the article. It first appeared from Frontiers Media via http://dx.doi.org/10.3389/fpsyg.2015.01203Many studies have argued for distinct but complementary contributions from each hemisphere in the control of movements to visual targets. Investigators have attempted to extend observations from patients with unilateral left- and right-hemisphere damage, to those using neurologically-intact participants, by assuming that each hand has privileged access to the contralateral hemisphere. Previous attempts to illustrate right hemispheric contributions to the control of aiming have focussed on increasing the spatial demands of an aiming task, to attenuate the typical right hand advantages, to try to enhance a left hand reaction time advantage in right-handed participants. These early attempts have not been successful. The present study circumnavigates some of the theoretical and methodological difficulties of some of the earlier experiments, by using three different tasks linked directly to specialized functions of the right hemisphere: bisecting, the gap effect, and visuospatial localization. None of these tasks were effective in reducing the magnitude of left hand reaction time advantages in right handers. Results are discussed in terms of alternatives to right hemispheric functional explanations of the effect, the one-dimensional nature of our target arrays, power and precision given the size of the left hand RT effect, and the utility of examining the proportions of participants who show these effects, rather than exclusive reliance on measures of central tendency and their associated null hypothesis significance tests.We are grateful to Lorna Jakobson, A. David Milner, Irene Logan, John Orphan, Phil Surette, and Jim Urqhuart for expert technical assistance. Leah T. Johnstone and two anonymous referees provided detailed comments on this manuscript. This research was supported by Medical Research Council of Canada Grant MA-7269 to MG and a Wellcome Trust Travel Grant to DC

    The correlation between posterior tibial slope and dynamic anterior tibial translation and dynamic range of tibial rotation

    Get PDF
    PURPOSE: The amount of passive anterior tibial translation (ATT) is known to be correlated to the amount of posterior tibial slope (PTS) in both anterior cruciate ligament-deficient and reconstructed knees. Slope-altering osteotomies are advised when graft failure after anterior cruciate ligament (ACL) reconstruction occurs in the presence of high PTS. This recommendation is based on studies neglecting the influence of muscle activation. On the other hand, if dynamic range of tibial rotation (rTR) is related to the amount of PTS, a “simple” anterior closing-wedge osteotomy might not be sufficient to control for tibial rotation. The purpose of this study was to evaluate the correlation between the amount of PTS and dynamic ATT and tibial rotation during high demanding activities, both before and after ACL reconstruction. We hypothesized that both ATT and rTR are strongly correlated to the amount of PTS. METHODS: Ten subjects were studied both within three months after ACL injury and one year after ACL reconstruction. Dynamic ATT and dynamic rTR were measured using a motion-capture system during level walking, during a single-leg hop for distance and during a side jump. Both medial and lateral PTS were measured on MRI. A difference between medial and lateral PTS was calculated and referred to as Δ PTS. Spearman’s correlation coefficients were calculated for the correlation between medial PTS, lateral PTS and Δ PTS and ATT and between medial PTS, lateral PTS and Δ PTS and rTR. RESULTS: Little (if any) to weak correlations were found between medial, lateral and Δ PTS and dynamic ATT both before and after ACL reconstruction. On the other hand, a moderate-to-strong correlation was found between medial PTS, lateral PTS and Δ PTS and dynamic rTR one year after ACL reconstruction. CONCLUSION: During high-demand tasks, dynamic ATT is not correlated to PTS. A compensation mechanism may be responsible for the difference between passive and dynamic ATT in terms of the correlation to PTS. A moderate-to-strong correlation between amount of PTS and rTR indicates that such a compensation mechanism may fall short in correcting for rTR. These findings warrant prudence in the use of a pure anterior closing wedge osteotomy in ACL reconstruction. TRIAL REGISTRATION: Netherlands Trial Register, Trial 7686. Registered 16 April 2016—Retrospectively registered. LEVEL OF EVIDENCE: Level 2, prospective cohort stud

    Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy

    Get PDF
    This randomized controlled trial evaluated the therapeutic benefit of mental practice with motor imagery in stroke patients with persistent upper limb motor weakness. There is evidence to suggest that mental rehearsal of movement can produce effects normally attributed to practising the actual movements. Imagining hand movements could stimulate restitution and redistribution of brain activity, which accompanies recovery of hand function, thus resulting in a reduced motor deficit. Current efficacy evidence for mental practice with motor imagery in stroke is insufficient due to methodological limitations. This randomized controlled sequential cohort study included 121 stroke patients with a residual upper limb weakness within 6 months following stroke (on average <3 months post-stroke). Randomization was performed using an automated statistical minimizing procedure. The primary outcome measure was a blinded rating on the Action Research Arm test. The study analysed the outcome of 39 patients involved in 4 weeks of mental rehearsal of upper limb movements during 45-min supervised sessions three times a week and structured independent sessions twice a week, compared to 31 patients who performed equally intensive non-motor mental rehearsal, and 32 patients receiving normal care without additional training. No differences between the treatment groups were found at baseline or outcome on the Action Research Arm Test (ANCOVA statistical P = 0.77, and effect size partial η2 = 0.005) or any of the secondary outcome measures. Results suggest that mental practice with motor imagery does not enhance motor recovery in patients early post-stroke. In light of the evidence, it remains to be seen whether mental practice with motor imagery is a valid rehabilitation technique in its own right

    Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals.

    Get PDF
    Many studies have argued for distinct but complementary contributions from each hemisphere in the control of movements to visual targets. Investigators have attempted to extend observations from patients with unilateral left- and right-hemisphere damage, to those using neurologically-intact participants, by assuming that each hand has privileged access to the contralateral hemisphere. Previous attempts to illustrate right hemispheric contributions to the control of aiming have focussed on increasing the spatial demands of an aiming task, to attenuate the typical right hand advantages, to try to enhance a left hand reaction time advantage in right-handed participants. These early attempts have not been successful. The present study circumnavigates some of the theoretical and methodological difficulties of some of the earlier experiments, by using three different tasks linked directly to specialized functions of the right hemisphere: bisecting, the gap effect, and visuospatial localization. None of these tasks were effective in reducing the magnitude of left hand reaction time advantages in right handers. Results are discussed in terms of alternatives to right hemispheric functional explanations of the effect, the one-dimensional nature of our target arrays, power and precision given the size of the left hand RT effect, and the utility of examining the proportions of participants who show these effects, rather than exclusive reliance on measures of central tendency and their associated null hypothesis significance tests

    Chronic pain relief after receiving affective touch: A single case report

    Get PDF
    Affective touch is gentle slow stroking of the skin, which can reduce experimentally induced pain. Our participant, suffering from Parkinson's Disease and chronic pain, received 1 week of non-affective touch and 1 week of affective touch as part of a larger study. Interestingly, after 2 days of receiving affective touch, the participant started to feel less pain. After 7 days, the burning painful sensations fully disappeared. This suggest that affective touch may reduce chronic pain in clinical populations

    The Contribution of the Parietal Lobes to Speaking and Writing

    Get PDF
    The left parietal lobe has been proposed as a major language area. However, parietal cortical function is more usually considered in terms of the control of actions, contributing both to attention and cross-modal integration of external and reafferent sensory cues. We used positron emission tomography to study normal subjects while they overtly generated narratives, both spoken and written. The purpose was to identify the parietal contribution to the modality-specific sensorimotor control of communication, separate from amodal linguistic and memory processes involved in generating a narrative. The majority of left and right parietal activity was associated with the execution of writing under visual and somatosensory control irrespective of whether the output was a narrative or repetitive reproduction of a single grapheme. In contrast, action-related parietal activity during speech production was confined to primary somatosensory cortex. The only parietal area with a pattern of activity compatible with an amodal central role in communication was the ventral part of the left angular gyrus (AG). The results of this study indicate that the cognitive processing of language within the parietal lobe is confined to the AG and that the major contribution of parietal cortex to communication is in the sensorimotor control of writing

    Motor contagion: the contribution of trajectory and end-points

    Get PDF
    Increased involuntary arm movement deviation when observing an incongruent human arm movement has been interpreted as a strong indicator of motor contagion. Here, we examined the contribution of trajectory and end-point information on motor contagion by altering congruence between the stimulus and arm movement. Participants performed cyclical horizontal arm movements whilst simultaneously observing a stimulus representing human arm movement. The stimuli comprised congruent horizontal movements or vertical movements featuring incongruent trajectory and end-points. A novel, third, stimulus comprised curvilinear movements featuring congruent end-points, but an incongruent trajectory. In Experiment 1, our dependent variables indicated increased motor contagion when observing the vertical compared to horizontal movement stimulus. There was even greater motor contagion in the curvilinear stimulus condition indicating an additive effect of an incongruent trajectory comprising congruent end-points. In Experiment 2, this additive effect was also present when facing perpendicular to the display, and thus with end-points represented as a product of the movement rather than an external spatial reference. Together, these findings support the theory of event coding (Hommel et al., Behav Brain Sci 24:849–878, 2001), and the prediction that increased motor contagion takes place when observed and executed actions share common features (i.e., movement end-points)
    corecore