31 research outputs found

    Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees

    Get PDF
    BACKGROUND: Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL) that contain genes affecting resistance to parasitic nematodes. RESULTS: Rams obtained from crossing nematode parasite resistant and susceptible selection lines were used to derive five large half-sib families comprising between 348 and 101 offspring per sire. Total offspring comprised 940 lambs. Extensive measurements for a range of parasite burden and immune function traits in all offspring allowed each lamb in each pedigree to be ranked for relative resistance to nematode parasites. Initially the 22 most resistant and 22 most susceptible progeny from each pedigree were used in a genome scan that used 203 microsatellite markers spread across all sheep autosomes. This study identified 9 chromosomes with regions showing sufficient linkage to warrant the genotyping of all offspring. After genotyping all offspring with markers covering Chromosomes 1, 3, 4, 5, 8, 12, 13, 22 and 23, the telomeric end of chromosome 8 was identified as having a significant QTL for parasite resistance as measured by the number of Trichostrongylus spp. adults in the abomasum and small intestine at the end of the second parasite challenge. Two further QTL for associated immune function traits of total serum IgE and T. colubiformis specific serum IgG, at the end of the second parasite challenge, were identified on chromosome 23. CONCLUSION: Despite parasite resistance being a moderately heritable trait, this large study was able to identify only a single significant QTL associated with it. The QTL concerned adult parasite burdens at the end of the second parasite challenge when the lambs were approximately 6 months old. Our failure to discover more QTL suggests that most of the genes controlling this trait are of relatively small effect. The large number of suggestive QTL discovered (more than one per family per trait than would be expected by chance) also supports this conclusion

    The host immune response to gastrointestinal nematode infection in sheep

    Get PDF
    non peer reviewedGastrointestinal nematode infection represents a major threat to the health, welfare and productivity of sheep populations worldwide. Infected lambs have a reduced ability to absorb nutrients from the gastrointestinal tract, resulting in morbidity and occasional mortality. The current chemo-dominant approach to nematode control is considered unsustainable due to the increasing incidence of anthelmintic resistance. In addition there is growing consumer demand for food products from animals not subjected to chemical treatment. Future mechanisms of nematode control must rely on alternative, sustainable strategies such as vaccination or selective breeding of resistant animals. Such strategies take advantage of the host's natural immune response to nematodes. The ability to resist gastrointestinal nematode infection is considered to be dependent on the development of a protective acquired immune response; although the precise immune mechanisms involved in initiating this process remain to be fully elucidated. In this paper current knowledge on the innate and acquired host immune response to gastrointestinal nematode infection in sheep and the development of immunity is reviewed.We gratefully acknowledge funding support for the research in our laboratories from the Teagasc Walsh Fellowship Programme, the Allan and Grace Kay Overseas Scholarship and the EC-funded FP7 Programme. We also thank the BBSRC Animal Health Research Club for funding part of this research (grant BB/l004070/1

    Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands

    Get PDF
    Haemonchus contortus appears to be the most economically important helminth parasite for small ruminant production in many regions of the world. The two sheep breeds native to the Canary Islands display distinctly different resistant phenotypes under both natural and experimental infections. Canaria Hair Breed (CHB) tends to have significantly lower worm burden and delayed and reduced egg production than the susceptible Canaria Sheep (CS). To understand molecular mechanisms underlying host resistance, we compared the abomasal mucosal transcriptome of the two breeds in response to Haemonchus infection using RNAseq technology. The transcript abundance of 711 and 50 genes were significantly impacted by infection in CHB and CS, respectively (false discovery rate <0.05) while 27 of these genes were significantly affected in both breeds. Likewise, 477 and 16 Gene Ontology (GO) terms were significantly enriched in CHB and CS, respectively (P < 1.0 × 10(−4)). A broad range of mechanisms have evolved in resistant CHB to provide protection against the parasite. Our findings suggest that readily inducible acute inflammatory responses, complement activation, accelerated cell proliferation and subsequent tissue repair, and immunity directed against parasite fecundity all contributed to the development of host resistance to parasitic infection in the resistant breed

    Transcriptional profiling of the ovine abomasal lymph node reveals a role for timing of the immune response in gastrointestinal nematode resistance

    Get PDF
    Gastrointestinal nematodes are a serious cause of morbidity and mortality in grazing ruminants. The major ovine defence mechanism is acquired immunity, with protective immunity developing over time in response to infection. Nematode resistance varies both within and between breeds and is moderately heritable. A detailed understanding of the genes and mechanisms involved in protective immunity, and the factors that regulate this response, is required to aid both future breeding strategies and the development of effective and sustainable nematode control methods. The aim of this study was to compare the abomasal lymph node transcriptome of resistant and susceptible lambs in order to determine biological processes differentially expressed between resistant and susceptible individuals. Scottish Blackface lambs, with divergent phenotypes for resistance, were challenged with 30,000 Teladorsagia circumcincta larvae (L3), and abomasal lymph nodes recovered at 7 and 14 days post-infection (dpi). High-throughput sequencing of cDNA from the abomasal lymph node was used to quantitatively sample the transcriptome with an average of 32 million reads per sample. A total of 194 and 144 genes were differentially expressed between resistant and susceptible lambs at 7 and 14 dpi respectively. Differentially expressed networks and biological processes were identified using Ingenuity Pathway Analysis. Genes involved in the inflammatory response, attraction of T lymphocytes and binding of leukocytes were more highly expressed in resistant animals at 7 dpi and in susceptible animals at 14 dpi indicating that resistant animals respond to infection earlier than susceptible animals. Twenty-four Single Nucleotide Polymorphisms (SNP) within 11 differentially expressed genes, were tested for association with gastrointestinal nematode resistance in the Scottish Blackface lambs. Four SNP, in 2 genes (SLC30A2 and ALB), were suggestively associated with faecal egg count. In conclusion, a large number of genes were differentially expressed in the abomasal lymph node of resistant and susceptible lambs responding to gastrointestinal nematode challenge. Resistant Scottish Blackface lambs appear to generate an earlier immune response to T. circumcincta. In susceptible lambs this response appears to be delayed. SNP in 2 differentially expressed genes were suggestively associated with faecal egg count indicating that differentially expressed genes may be considered candidate loci for mediating nematode resistance

    The gastrointestinal nematode Trichostrongylus colubriformis down-regulates immune gene expression in migratory cells in afferent lymph

    Get PDF
    Background: Gastrointestinal nematode (GIN) infections are the predominant cause of economic losses in sheep. Infections are controlled almost exclusively by the use of anthelmintics which has lead to the selection of drug resistant nematode strains. An alternative control approach would be the induction of protective immunity to these parasites. This study exploits an ovine microarray biased towards immune genes, an artificially induced immunity model and the use of pseudo-afferent lymphatic cannulation to sample immune cells draining from the intestine, to investigate possible mechanisms involved in the development of immunity.\ud \ud Results: During the development of immunity to, and a subsequent challenge infection with Trichostrongylus colubriformis, the transcript levels of 2603 genes of cells trafficking in afferent intestinal lymph were significantly modulated (P < 0.05). Of these, 188 genes were modulated more than 1.3-fold and involved in immune function. Overall, there was a clear trend for down-regulation of many genes involved in immune functions including antigen presentation, caveolar-mediated endocytosis and protein ubiquitination. The transcript levels of TNF receptor associated factor 5 (TRAF5), hemopexin (HPX), cysteine dioxygenase (CDO1), the major histocompatability complex Class II protein (HLA-DMA), interleukin-18 binding protein (IL-18BP), ephrin A1 (EFNA1) and selenoprotein S (SELS) were modulated to the greatest degree.\ud \ud Conclusions: This report describes gene expression profiles of afferent lymph cells in sheep developing immunity to nematode infection. Results presented show a global down-regulation of the expression of immune genes which may be reflective of the natural temporal response to nematode infections in livestock

    Mapping quantitative trait loci (QTL) in sheep. II. Meta-assembly and identification of novel QTL for milk production traits in sheep

    Get PDF
    An (Awassi × Merino) × Merino backcross family of 172 ewes was used to map quantitative trait loci (QTL) for different milk production traits on a framework map of 200 loci across all autosomes. From five previously proposed mathematical models describing lactation curves, the Wood model was considered the most appropriate due to its simplicity and its ability to determine ovine lactation curve characteristics. Derived milk traits for milk, fat, protein and lactose yield, as well as percentage composition and somatic cell score were used for single and two-QTL approaches using maximum likelihood estimation and regression analysis. A total of 15 significant (P < 0.01) and additional 25 suggestive (P < 0.05) QTL were detected across both single QTL methods and all traits. In preparation of a meta-analysis, all QTL results were compared with a meta-assembly of QTL for milk production traits in dairy ewes from various public domain sources and can be found on the ReproGen ovine gbrowser http://crcidp.vetsci.usyd.edu.au/cgi-bin/gbrowse/oaries_genome/. Many of the QTL for milk production traits have been reported on chromosomes 1, 3, 6, 16 and 20. Those on chromosomes 3 and 20 are in strong agreement with the results reported here. In addition, novel QTL were found on chromosomes 7, 8, 9, 14, 22 and 24. In a cross-species comparison, we extended the meta-assembly by comparing QTL regions of sheep and cattle, which provided strong evidence for synteny conservation of QTL regions for milk, fat, protein and somatic cell score data between cattle and sheep

    Breeding for resistance to gastrointestinal nematodes - the potential in low-input/output small ruminant production systems

    Get PDF
    AbstractThe control of gastrointestinal nematodes (GIN) is mainly based on the use of drugs, grazing management, use of copper oxide wire particles and bioactive forages. Resistance to anthelmintic drugs in small ruminants is documented worldwide. Host genetic resistance to parasites, has been increasingly used as a complementary control strategy, along with the conventional intervention methods mentioned above. Genetic diversity in resistance to GIN has been well studied in experimental and commercial flocks in temperate climates and more developed economies. However, there are very few report outputs from the more extensive low-input/output smallholder systems in developing and emerging countries. Furthermore, results on quantitative trait loci (QTL) associated with nematode resistance from various studies have not always been consistent, mainly due to the different nematodes studied, different host breeds, ages, climates, natural infections versus artificial challenges, infection level at sampling periods, among others. The increasing use of genetic markers (Single Nucleotide Polymorphisms, SNPs) in GWAS or the use of whole genome sequence data and a plethora of analytic methods offer the potential to identify loci or regions associated nematode resistance. Genomic selection as a genome-wide level method overcomes the need to identify candidate genes. Benefits in genomic selection are now being realised in dairy cattle and sheep under commercial settings in the more advanced countries. However, despite the commercial benefits of using these tools, there are practical problems associated with incorporating the use of marker-assisted selection or genomic selection in low-input/output smallholder farming systems breeding schemes. Unlike anthelmintic resistance, there is no empirical evidence suggesting that nematodes will evolve rapidly in response to resistant hosts. The strategy of nematode control has evolved to a more practical manipulation of host-parasite equilibrium in grazing systems by implementation of various strategies, in which improvement of genetic resistance of small ruminant should be included. Therefore, selection for resistant hosts can be considered as one of the sustainable control strategy, although it will be most effective when used to complement other control strategies such as grazing management and improving efficiency of anthelmintics currently

    Variations in T Cell Transcription Factor Sequence and Expression Associated with Resistance to the Sheep Nematode Teladorsagia circumcincta

    Get PDF
    This study used selected lambs that varied in their resistance to the gastrointestinal parasite Teladorsagia circumcincta. Infection over 12 weeks identified susceptible (high adult worm count, AWC; high fecal egg count, FEC; low body weight, BW; low IgA) and resistant sheep (no/low AWC and FEC, high BW and high IgA). Resistance is mediated largely by a Th2 response and IgA and IgE antibodies, and is a heritable characteristic. The polarization of T cells and the development of appropriate immune responses is controlled by the master regulators, T-bet (TBX21), GATA-3 (GATA3), RORγt (RORC2) and RORα (RORA); and several inflammatory diseases of humans and mice are associated with allelic or transcript variants of these transcription factors. This study tested the hypothesis that resistance of sheep to T. circumcincta is associated with variations in the structure, sequence or expression levels of individual master regulator transcripts. We have identified and sequenced one variant of sheep TBX21, two variants of GATA3 and RORC2 and five variants of RORA from lymph node mRNA. Relative RT-qPCR analysis showed that TBX21, GATA3 and RORC2 were not significantly differentially-expressed between the nine most resistant (AWC, 0; FEC, 0) and the nine most susceptible sheep (AWC, mean 6078; FEC, mean 350). Absolute RT-qPCR on 29 all 45 animals identified RORAv5 as being significantly differentially-expressed (p = 0.038) 30 between resistant, intermediate and susceptible groups; RORAv2 was not differentially- 31 expressed (p = 0.77). Spearman’s rank analysis showed that RORAv5 transcript copy number 32 was significantly negatively correlated with parameters of susceptibility, AWC and FEC; and 33 was positively correlated with BW. RORAv2 was not correlated with AWC, FEC or BW but 34 was significantly negatively correlated with IgA antibody levels [corrected]. This study identifies the full length RORA variant (RORAv5) as important in controlling the protective immune response to T. circumcincta infection in sheep
    corecore