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23 SUMMARY 

24 Gastrointestinal nematode infection represents a major threat to the health, welfare and 

25 productivity of sheep populations worldwide. Infected lambs have a reduced ability to absorb 

26 nutrients from the gastrointestinal tract, resulting in morbidity and occasional mortality. The 

27 current chemo-dominant approach to nematode control is considered unsustainable due to the 

28 increasing incidence of anthelmintic resistance. In addition there is growing consumer 

29 demand for food products from animals not subjected chemical treatment. Future mechanisms 

30 of nematode control must rely on alternative, sustainable strategies such as vaccination or 

31 selective breeding of resistant animals. Such strategies take advantage of the host’s natural 

32 immune response to nematodes. The ability to resist gastrointestinal nematode infection is 

33 considered to be dependent on the development of a protective acquired immune response; 

34 although the precise immune mechanisms involved in initiating this process remain to be fully 

35 elucidated. In this paper current knowledge on the innate and acquired host immune response 

36 to gastrointestinal nematode infection in sheep and the development of resistance is reviewed. 

37 
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39 INTRODUCTION 

40 Gastrointestinal nematode (GIN) parasitism is a major constraint affecting sheep production 

41 systems. Naïve lambs are exposed to infection when grazing contaminated pasture.  

42 Consequently, infections are generally comprised of a mix of species, which infect both the 

43 abomasum and intestine. The species of infective larvae on pasture is dependent on a number 

44 of factors including temperature and moisture and therefore often displays a seasonal 

45 distribution (1). As GIN are highly aggregated within the host population, susceptible  

46 individuals can harbour thousands of worms, which in turn leads to increased pasture  

47 contamination. Current sheep production systems are highly dependent on the availability of 

48 efficacious anthelmintic products and are threatened by the increasing incidence of  

49 anthelmintic resistance. Resistance to all anthelmintic classes has now been reported, with the 

50 exception of derquantel, which first came to market in 2010 (2-5). The looming spectre of 

51 widespread anthelmintic resistance has led to renewed interest in alternative nematode control 

52 strategies such as vaccination, breeding for resistance and immunomodulatory anthelmintics. 

53 Many of these strategies exploit the natural host immune response to GIN. The major host 

54 defence mechanism against GIN is considered to be acquired immunity (6), which develops 

55 over time in response to challenge and is dependent on the age of the animal, nutritional status 

56 and genotype (7-9). A current challenge for sheep producers is to allow stock sufficient 

57 exposure to GIN in order to develop immunity without impairing production. 

58 

59 MANIFESTATIONS OF IMMUNITY 

60 The development of immunity to GIN is complex and highly variable. The rate of  

61 development of immunity depends on the breed of sheep, the nematode species to which they 

62 are exposed and the intensity of infection. While lambs rapidly develop the ability to control 

63 GIN such as Nematodirus battus (10), resistance to other species, such as Teladorsagia 



64 circumcincta, is much slower to develop (9). Immune competence can be observed through 

65 prevention of establishment of most incoming infective larvae, suppressed GIN growth (and 

66 therefore fecundity), the expulsion of adult worms, or a mixture of the above (6, 11, 12).  

67 Lambs start to demonstrate immune competence from 2 to 3 months of age (13), with regular 

68 exposure to larval challenge allowing the immune response to develop until a significant  

69 protective immune capability is developed by 10 to 12 months of age (1, 11). Adult sheep 

70 tend to remain relatively resistant to infection, harbouring only a few adult worms, although 

71 regular exposure to some level of infection is required to retain immunity (14). An alternative 

72 view is that immunity develops in two stages; suppression of worm growth precedes  

73 suppression of worm establishment and survival (15). Immunity to intestinal worms also 

74 develops more rapidly than immunity to abomasal worms (16). 

75 Nutritional stress, ill-health and pregnancy can all influence an individual's immune 

76 status. It has been observed that the nutritional status of the host during GIN infection is 

77 important, with the provision of additional protein to growing sheep during infection resulting 

78 in enhanced immunity to GIN (17, 18). A relaxation in host immunity to GIN is observed in 

79 ewes during the periparturient period, from approximately 2 weeks before lambing to 

80 approximately 6 weeks post lambing, although this timing is very variable. It is largely due to 

81 nutritional stress in the ewe and can be prevented by supplementary feeding (19). The  

82 increase in faecal egg count (FEC) is known as the periparturient rise (20), and is a major 

83 contributor to pasture larval contamination encountered by lambs (21). 

84 

85 THE INNATE IMMUNE RESPONSE 

86 The immune system of vertebrates is composed of two arms, the innate (non-specific) 

87 immune response and the adaptive (specific) response, the various cellular and biochemical 



88 components of which work together to protect vertebrates from a range of threats. The first 

89 line of defence against GIN is the innate immune system, which plays a role in sensing GIN, 

90 then initiating and driving the acquired immune response. Of particular relevance are innate 

91 physical barriers to the establishment and survival of GIN, and subsequently the process by 

92 which the host recognises the presence of GIN and activates an immune response. 

93 Physical barriers to the establishment and survival of GIN 

 94 The inner surface of the gastrointestinal tract is covered with a layer of mucus, primarily 

 95 produced by epithelial goblet cells (22). This is the front line of the innate defence against 

96 ingested food and pathogens in the gastrointestinal tract. The primary component of mucus is 

97 mucin, however it also contains an array of bioactive molecules such as defensins and trefoil 

98 factors (23). Many of these bioactive molecules have been shown to be anti-microbial, or to 

99 stimulate inflammation (24). Both increased mucus production and the presence of inhibitory 

100 substances in the mucus have consistently been observed during the development of immunity 

101 to GIN (25-27). 

102 Enteric smooth muscle contractility has been shown to play an important role in 

103 mediating nematode resistance in mice, with changes in intestinal motility reported to be  

104 responsible for parasite expulsion (28). However, its role in GIN expulsion in sheep is less 

105 clear. An up-regulation of genes related to the structure and function of the enteric smooth 

106 muscle was observed in lambs selected for resistance to GIN when compared to their  

107 susceptible counterparts (29). Additionally, the concentration of bradykinin, a physiologically 

108 active peptide which can promote vasodilation and smooth muscle contraction was negatively 

109 correlated with the number of adult 7'. circumcincta worms in immune sheep (30). Contrary to 

110 this, however, it has been reported that susceptible Suffolk lambs showed greater duodenal 

111 contractile force compared to resistant lambs in response to 7'. circumcincta infection (31). 

112 Pattern recognition receptors (PRRs) 



113 Among the earliest systems for the detection of pathogens are the germline-encoded pattern 

114 recognition receptors (PRRs) such as C-type lectin receptors (CLRs) and toll-like receptors 

115 (TLRs). CLRs and TLRs are expressed by many cell types, including the cells of mucosal 

116 surfaces and tissue immune cells such macrophages and dendritic cells, the major antigen 

117 presenting cells (APCs) (32, 33). PRR proteins identify both pathogen-associated molecular 

118 patterns (PAMPs; pathogen molecular structures not found in the host), and damage 

119 associated molecular patterns (DAMPs; molecules released from damaged or stressed cells). 

120 Both PAMPs and DAMPs can result in the initiation and perpetuation of the inflammatory 

121 response. As well as being the first line of defence, PRRs play an important role in the 

122 induction of cytokines and other signals responsible for the activation and manipulation of the 

123 adaptive immune system (34). 

124 While viral, bacterial and fungal ligands which act as potent PAMPs and are  

125 recognised by mammalian PRRs are well described, less is known about the role of PRRs in 

126 the response to nematode infection. TLR genes (TLR2, TLR4 and TLR9) have been found to 

127 be more abundantly expressed in the gut mucosa of genetically resistant sheep following GIN 

128 challenge (35). CLRs are also candidates for innate recognition of surface carbohydrate 

129 present on nematodes The mannose receptor (a CLR) has been shown to bind to 

130 excretory/secretory proteins of the mouse nematode Trichuris muris, but was not essential for 

131 protective immunity (36). 

132 Tissue phagocytic cells such as dendritic cells and macrophages play a critical role in 

133 innate immunity, but also help initiate acquired immunity through their ability to sample  

134 antigens, migrate to secondary lymphoid tissue and activate antigen-specific T cells within 

135 this tissue. M1 (classically activated) macrophages are activated through TLRs and interferon- 

136 gamma (IFN-γ), whereas M2 (alternatively activated) macrophages are stimulated by the  

137 interleukins (IL) IL-4 or IL- 13. These states are not static however, with ovine M1 and M2 



138 patterns capable of reverting from one to the other according to cytokine availability (37). M2 

139 macrophages have three main functions during helminth infection: regulation of the immune 

140 response, healing of damaged tissue, and resistance to parasite invasion (38). During a Th2- 

141 type response to nematode infection, M2 macrophages express chitinase and FIZZ family 

142 member proteins (ChaFFs), suggesting an effector or wound-repair role for the molecules at 

143 the site of nematode infection (39). Chitinases degrade chitin, a molecule present in the 

144 exoskeletal elements of some animals, including helminth larvae (40). A joint role for  

145 macrophages and neutrophils in preventing establishment of H. contortus larvae has also been 

146 suggested (41). Macrophage-like cells were also occasionally observed associated with 

147 completely destroyed H. contortus larvae from sensitized sheep (42). 

148 Cytotoxic and proinflammatory cells 

149 At the site of infection in the gastrointestinal tract mast cells are recruited by the release of 

150 chemokines and other inflammatory mediators by innate immune cells. Although best known 

151 for their role in the allergic response, increased numbers of tissue mast cells have also been 

152 observed during helminth infection. Mast cells are inflammatory cells that can both respond 

153 directly to pathogens and send signals to other tissues to modulate both the innate and 

154 adaptive immune responses (43). Two subsets of mast cells have been described based on 

155 their location: connective tissue mast cells (CTMCs) and mucosal mast cells (MMCs) (44). 

156 Mast cells appear uniformly scattered in tissue and activation of mast cells occurs primarily 

157 through antigen induced stimulation of the high-affinity immunoglobulin E (IgE) receptor 

158 (FcεRIs) expressed at the mast-cell surface (45). Mast cells can also be activated by directly 

159 interacting with PAMPs through PRRs (43). Mast cells store a number of inflammatory 

160 mediators (including histamine, leukotrienes and proteases) that are released upon  

161 degranulation into the surrounding tissues (46, 47). The effects of these chemical mediators 

162 are characteristic of type 1 hypersensitivity, and include smooth muscle contraction, increased 

163 vascular permeability and local blood flow, and enhanced mucus secretion. In response to 



164 GIN infection, mast cells also produce Th2 cytokines such as IL-13, IL-4 and IL-5 in addition 

165 to chemotactic factors which contribute to the recruitment of multiple inflammatory cells 

166 including eosinophils, natural killer (NK) cells, and neutrophils (43). In sheep, nematode- 

167 induced activation of mast cells has been associated with the acquired immune response (48, 

168 49). An important mechanism controlling the number of adult 7'. circumcincta in previously 

169 sensitised animals appears to be IgE-dependent mast cell degranulation (12), with sheep mast 

170 cell proteinase systemically released during nematode infections (50). 

171 In addition to an increase in the numbers of mast cells, an increase in eosinophils is 

172 also characteristic of infection with nematode parasites. Eosinophils develop in the bone 

173 marrow from haematopoietic stem cells (51) in response to the Th2 cytokines IL-3, IL-5, and 

174 GM-CSF (52). Following infection, eosinophils proliferate in the blood in a process known as 

175 eosinophilia. Mature eosinophils are activated and migrate to the site of infection in response 

176 to various chemoattractants, such as IL-5 and members of the eotaxin family of chemokines 

177 CCL11, CCL24 and CCL26 (53). In tissue, eosinophils can show directional migration  

178 toward a parasite target (54). Following activation, the effector functions of eosinophils  

179 include immune regulation, resistance to parasitic invasion through degranulation and the 

180 release of eosinophil secondary granule proteins (EPGPs) and healing damaged tissue. The 

181 effector functions result in the damage and killing of larval stages of many helminth parasites 

182 (42, 55, 56). 

183 Eosinophils have been shown to play a significant role in the development of 

184 resistance to multiple species of GIN in sheep (42, 57-59). A reduction in peripheral blood 

185 eosinophilia has been observed during primary infection with 7'. circumcincta, which was 

186 hypothesised to be a result of recruitment of cells into the intestinal epithelium (60). However, 

187 the relationship between peripheral blood eosinophilia and tissue eosinophilia is reasonably 



188 weak, with only a proportion of circulating eosinophils moving into the abomasal mucosa in 

189 response to GIN infection (58). Increases in tissue eosinophils have been observed during 

190 Haemonchus contortus infection of both naïve (61) and previously sensitised (42, 62) sheep, 

191 resistant Romney selection line animals with a naturally acquired mixed infection (63) and 

192 Suffolk and Texel lambs infected with T. circumcincta (64). 

193 

194 THE ADAPTIVE IMMUNE RESPONSE 

195 On encountering a foreign antigen, antigen presenting cells (APCs) such as activated dendritic 

196 cells and macrophages migrate to the regional lymph nodes via the afferent lymphatic system 

197 where they display the antigens to their cognate T cell receptor via MHC class I or II carrier 

198 molecules. The activation of the naïve T cell by APCs initiates the adaptive immune response 

199 and results in the release of cytokines, leading to both T cell differentiation and the  

200 proliferation of further T cells. 

201 Antigen processing and presentation 

202 Thymus-derived T cells play a central role in the cell-mediated immune response. T cells are 

203 differentiated from other lymphocytes by the presence of a T cell receptor (TCR) on the cell 

204 surface. There are several types of T cell, including cytotoxic, helper and regulatory T cells. 

205 Cytotoxic T cells (Tc) kill cells that are infected with viruses or other intracellular pathogens 

206 or damaged cells. They are also known as CD8 T cells as they express the CD8 glycoprotein 

207 at their surface. T helper cells (Th) express the surface protein CD4, and provide essential 

208 additional signals to activate maturation of B cells, Tc cells, and macrophages. Th cells can be 

209 further classified as Th1, Th2 or Th17 cells depending on the cytokines they produce. CD8 

210 and CD4 T cells bind MHC class I and MHC class II molecules respectively. Regulatory T 

211 cells (Treg) suppress the activity of other lymphocytes, and are critical for the maintenance of 

212 immunological tolerance. 



213 The T cell response 

214 The Th1 response has been traditionally associated with the immune response to intracellular 

215 bacteria, protozoa and viruses. The Th1 cascade is triggered by the production of IL-12 by 

216 dendritic cells, macrophages and B cells (65), which stimulates the production of the pro- 

217 inflammatory cytokine IFN-γ by natural killer (NK) cells (66). IFN-γ is important for 

218 differentiation of naive CD4
+
 T cells into IFN-γ-producing Th1 cells (67). The T-box 

219 transcription factor T-bet plays a critical role in this process, accounting for Th1 cell 

220 development and the Th1 cell-specific IFN-γ production (68, 69). Both IL-12 and IFN-γ also 

221 inhibit the production of the Th2 cytokine IL-4 in mice infected with intestinal nematodes 

222 (70). The effector molecules of the Th1 response are specialised to stimulate proliferation of 

223 CD8
+
 Tc cells and activate macrophages and increased expression of these effectors has been 

224 associated with GIN susceptibility in sheep in a number of studies (71-73). 

225 An antibody-stimulating protective Th2-type response is commonly elicited by 

226 helminth parasites. Common features include expression of Th2-type cytokines (IL-4, IL-5 

227 and IL-13), infiltration of eosinophils, basophils and mast cells (all of which can produce 

228 several types of Th2-type cytokines), and IgE production (74). The presence of IL-4 early in 

229 Trichuris muris infection has been shown to be critical for the activation of the protective Th2 

230 response in mice (75). IL-4, through activation of STAT6, up-regulates GATA3 expression, 

231 inducing differentiation of naïve Th cells to Th2 cells while suppressing differentiation into 

232 Th1 cells (76). Upon activation, Th2 cells produce additional IL-4 in a positive feedback loop, 

233 along with other Th2 cytokines including IL-5, IL-9, IL-13 and IL-25. IL-4 induces class 

234 switching in activated B cells, leading to production of IgE (77). The antibody IgE primes the 

235 IgE-mediated type 1 hypersensitivity response by binding to Fc (FcεRI and II) receptors on 

236 the surface of mast cells and basophils (78). When helminth antigen binds to cell bound IgE it 

237 leads to mast cell degranulation, and the release of soluble mediators (74). The sensitivity of 

238 target cells to mast cell and basophil-derived mediators is increased by IL-4 and IL-1 3 



239 signalling. In mice it has been shown that together the two cytokines promote increased 

240 contractility of smooth muscle cells (79), increased permeability of epithelial cells (80), and 

241 elevated goblet-cell hyperplasia during nematode infection (81). The presence of IL-4 in 

242 extravascular tissue induces alternative activation of resident tissue macrophages, which 

243 function in wound healing and tissue repair. IL-5, aside from triggering eosinophilia, 

244 enhances secretion of IgA by B cells (82). The Th2 cytokine IL-1 3 induces epithelial cell 

245 repair and mucus production, and together with IL-9 recruits and activates mucosal mast cells. 

246 In sheep, the timely induction of a Th2 response to GIN infection, characterised by mast cell 

247 hyperplasia, eosinophilia, recruitment of IgA/IgE producing cells and the expression of Th2 

248 cytokines, is considered to promote the development of resistance (83, 84). 

249 The roles of the more recently discovered Th1 7 and Treg cells in the ovine response to 

250 GIN remains to be elucidated. Th17 cells promote inflammation through the recruitment of 

251 neutrophils and macrophages to the site of infection. Early in infection IL-6, produced by 

252 dendritic cells, acts with TGF-β (also required for the differentiation of regulatory T cells) to 

253 produce the Th17 response. This results in the production of IL-17 family members and IL- 

254 21, a subset of cytokines particularly important in clearing pathogens during host defence 

255 responses and in inducing tissue inflammation in autoimmune disease (85). Later, dendritic 

256 cells along with other antigen-presenting cells produce cytokines to promote either Th1 or 

257 Th2 development, and suppress Th17 development. Increased expression of Th17-associated 

258 genes has been associated with both susceptibility (86) and resistance (87) to GIN in sheep 

259 depending on the experimental model. Treg cells are a subpopulation of T cells that are 

260 involved in the maintenance of immunological self-tolerance and homeostasis through 

261 immune suppression (88). Expression of the forkhead transcription factor FOXP3 is critical 

262 for the development and function of Treg cells (89). Treg (CD4
+
CD25

+
Foxp3

+
) cells are an 

263 important “self-check” in the immune system, and have been shown to be activated and 

264 expanded during helminth infection in mice (90-92). A faster switch from a Th1 to a 



265 Th2/Treg response was found in resistant Suffolk lambs compared to susceptible lambs (93). 

266 The human T cell response may be more functionally diverse than previously thought. 

267 Pathogen stimulation of naïve T cells may give rise to multiple T cell subtypes, suggesting 

268 that Th cell polarisation could be the results of preferential expansion of particular clones 

269 rather than preferential priming (94). The implication of this for sheep Th cell polarisation 

270 remains to be determined. 

271 Antibody response 

272 The principal function of B cells is to make antibodies (immunoglobulins) against 

273 antigens. The binding of an antigen to a naïve B cell, coupled with the accessory signals from 

274 Th cells, stimulates the lymphocyte to proliferate and differentiate into plasma cells, which 

275 secrete large amounts of antibodies. A number of antibodies isotypes have been shown to be 

276 correlated with GIN resistance in sheep, including IgA, IgG1 and IgE. IgA, which has both 

277 circulating and secretory isoforms, is the isotype most closely associated with intestinal 

278 mucosal immune responses. Increased levels of IgA have been positively associated with 

279 resistance to 7'. circumcincta, regulating both worm length and fecundity (95-98). This 

280 resistance is regulated through suppressed parasite growth, development and fecundity, and is 

281 mediated by IgA activity against 4th-stage larvae. In Scottish Blackface lambs the presence of 

282 arrested L4 larvae has been shown to be positively associated with both worm burden and the 

283 size of the local IgA immune response (12). Elevated levels of both IgA and IgG1 were 

284 observed in 7'. colubriformis-challenged sheep (99). 

285 Increased levels of IgG1 and IgE have also been negatively correlated with FEC in 

286 Romney selection line sheep in New Zealand (100-102), although IgE was positively 

287 correlated with breech soiling (102). IgE mediates mast cell, eosinophil and basophil  



288 degranulation in response to GIN and elevation of total and/or parasite-specific IgE serum 

289 antibodies have been reported during infection with H. contortus (103), T. colubriformis (104) 

290 and T. circumcincta (105, 106). In addition, an association between a polymorphism at the 5' 

291 end of the sheep IgE gene and resistance to T. colubriformis has been reported, although 

292 attempts to confirm this finding in other flocks failed (107). 

293 A significant number of activated antigen-specific B cells and T cells persist after an 

294 antigen has been eliminated, and these are known as memory cells. These cells form the basis 

295 of immunological memory and can be reactivated much more quickly than naïve  

296 lymphocytes, and usually provide lasting protective immunity. 

297 

298 DEVELOPMENT OF RESISTANCE TO GIN IN SHEEP 

299 Studies comparing naïve and previously infected animals have shown that  

300 development of immunity to GIN is associated with a predominantly Th2 response,  

301 characterised by an increase in Th2 cytokines, recruitment of eosinophils, mast cells and 

302 globule leucocytes, and increased production of parasite-specific IgA, IgG1 and IgE (108- 

303 110). However, there is conflicting evidence on whether a Th2 response can be used to select 

304 resistant or susceptible animals. While an increase in inflammatory cells and parasite-specific 

305 IgA were generally inversely associated with H. contortus worm burden and FEC in three 

306 breeds of sheep, mean values were not found to differ between the resistant (Santa Ines) and 

307 susceptible (Suffolk and Ile de France) breeds (111). This is in contrast to a study comparing 

308 genetically resistant sheep with random-bred Merino lambs, which found resistant lambs had 

309 increased IL-5 expression, increased IgG1 and IgE antibody production, and higher densities 

310 of mucosal mast cells and eosinophils in response to H. contortus infection (71). During 

311 repeated experimental infections with T. colubriformis, genetically resistant sheep were also 

312 able to respond earlier than susceptible animals with nematode-specific IgA and IgG2 (112). 



313 Resistant Barbados Black Belly lambs have also been shown to develop a more rapid Th2- 

314 type response than the susceptible INRA 401 lambs after a primary infection with H. 

315 contortus (113). A differential interplay between Th1/Th2 and Treg genes has also been 

316 proposed to modulate the immune response to GIN rather than a straightforward Th1 or Th2 

317 pathway (93) and failure to observe consistent gene expression profiles between resistant and 

318 susceptible animals could be due to variation in response time between studies. Additionally, 

319 multiple studies have suggested that the mechanisms of resistance may vary between animals 

320 with different genetic backgrounds, and may be parasite-specific (111, 114). 

321 

322 CONCLUSION 

323 The host-parasite interaction is a complex relationship which determines the outcome of  

324 infection. Sheep GIN display a variety of surface and secretory/excretory antigens which can 

325 be stage-specific. Such molecules trigger the host’s immune response generally resulting in 

326 the development of a protective immune response, although the level of immunity is  

327 dependent on age, nutritional status and genotype. Increased mucus and bioactive molecule 

328 production, activation of mast cells, eosinophilia, polarisation of the immune response to a 

329 Th2 response and the production of anti-nematode antibodies are all associated with the 

330 development of immunity. A protective immune response can be considered an expression of 

331 resistance and a detailed understanding of the genes and biological mechanisms involved in 

332 protective immunity will aid the development of non-chemical effective and sustainable 

333 nematode control methods. Understanding the genetic and molecular basis of  disease 

334 resistance also has many advantages and applications such as the development of novel  

335 genetic markers for inclusion in genetic improvement programmes. 

336 

337 
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