89 research outputs found

    Disease-specific changes in Reelin protein and mRNA in neurodegenerative diseases

    Get PDF
    Reelin is an extracellular glycoprotein that modulates neuronal function and synaptic plasticity in the adult brain. Decreased levels of Reelin activity have been postulated as a key factor during neurodegeneration in Alzheimer's disease (AD) and in aging. Thus, changes in levels of full-length Reelin and Reelin fragments have been revealed in cerebrospinal fluid (CSF) and in post-mortem brains samples of AD patients with respect to non-AD patients. However, conflicting studies have reported decreased or unchanged levels of full-length Reelin in AD patients compared to control (nND) cases in post-mortem brains and CSF samples. In addition, a compelling analysis of Reelin levels in neurodegenerative diseases other than AD is missing. In this study, we analyzed brain levels of RELN mRNA and Reelin protein in post-mortem frontal cortex samples from different sporadic AD stages, Parkinson's disease with dementia (PDD), and Creutzfeldt-Jakob disease (sCJD), obtained from five different Biobanks. In addition, we measured Reelin protein levels in CSF samples of patients with mild cognitive impairment (MCI), dementia, or sCJD diagnosis and a group of neurologically healthy cases. The results indicate an increase in RELN mRNA in the frontal cortex of advanced stages of AD and in sCJD(I) compared to controls. This was not observed in PDD and early AD stages. However, Reelin protein levels in frontal cortex samples were unchanged between nND and advanced AD stages and PDD. Nevertheless, they decreased in the CSF of patients with dementia in comparison to those not suffering with dementia and patients with MCI. With respect to sCJD, there was a tendency to increase in brain samples in comparison to nND and to decrease in the CSF with respect to nND. In conclusion, Reelin levels in CSF cannot be considered as a diagnostic biomarker for AD or PDD. However, we feel that the CSF Reelin changes observed between MCI, patients with dementia, and sCJD might be helpful in generating a biomarker signature in prodromal studies of unidentified dementia and sCJD

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF
    The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC?2 pathway as drug-target

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF
    The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer’s disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLCγ2 pathway as drug-target.Fil:  van der Lee, Sven J.. Vrije Universiteit Amsterdam; Países BajosFil: Conway, Olivia J.. Mayo Clinic Cancer Center; Estados UnidosFil: Jansen, Iris. Vrije Universiteit Amsterdam; Países BajosFil: Carrasquillo, Minerva M.. Mayo Clinic Cancer Center; Estados UnidosFil: Kleineidam, Luca. Universitat Bonn; Alemania. German Center for Neurodegenerative Diseases; Alemania. University Hospital Cologne; AlemaniaFil: van den Akker, Erik. Leiden University. Leiden University Medical Center; Países Bajos. Delft University of Technology; Países BajosFil: Hernández, Isabel. Universitat Internacional de Catalunya; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: van Eijk, Kristel R.. University of Utrecht; Países BajosFil: Stringa, Najada. Vrije Universiteit Amsterdam; Países BajosFil: Chen, Jason A.. University of California at Los Angeles; Estados UnidosFil: Zettergren, Anna. University of Gothenburg; SueciaFil: Andlauer, Till F. M.. Max Planck Institute of Psychiatry; Alemania. Universitat Technical Zu Munich; Alemania. German Competence Network Multiple Sclerosis; AlemaniaFil: Diez Fairen, Monica. University Hospital Mutua de Terrassa; España. Fundacio per la Recerca Biomedica I Social Mutua Terrassa; EspañaFil: Simon Sanchez, Javier. Deutsches Zentrum für Neurodegenerative Erkrankungen; Alemania. Eberhard Karls Universität Tübingen; AlemaniaFil: Lleó, Alberto. Universitat Autònoma de Barcelona; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: Zetterberg, Henrik. Sahlgrenska University Hospital; Suecia. University of Gothenburg; Suecia. University College London; Estados UnidosFil: Nygaard, Marianne. University of Southern Denmark; DinamarcaFil: Blauwendraat, Cornelis. National Institute of Neurological Disorders and Stroke; Estados UnidosFil: Savage, Jeanne E.. Vrije Universiteit Amsterdam; Países BajosFil: Mengel From, Jonas. University of Southern Denmark; DinamarcaFil: Moreno Grau, Sonia. Universitat Internacional de Catalunya; EspañaFil: Wagner, Michael. Universitat Bonn; Alemania. Deutsches Zentrum für Neurodegenerative Erkrankungen; AlemaniaFil: Fortea, Juan. Universitat Autònoma de Barcelona; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: Keogh, Michael J.. University of Newcastle; Reino Unido. University of Cambridge; Reino UnidoFil: Blennow, Kaj. Sahlgrenska University Hospital; Suecia. University of Gothenburg; SueciaFil: Skoog, Ingmar. University of Gothenburg; SueciaFil: Friese, Manuel A.. German Competence Network Multiple Sclerosis; Alemania. Universitätsklinikum Hamburg‐Eppendorf; AlemaniaFil: Pletnikova, Olga. University Johns Hopkins; Estados UnidosFil: Zulaica, Miren. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; España. Instituto Biodonostia; EspañaFil: Dalmasso, Maria Carolina. University Hospital Cologne; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Mendelian Randomisation Confirms the Role of Y-Chromosome Loss in Alzheimer’s Disease Aetiopathogenesis in Men

    Get PDF
    Mosaic loss of chromosome Y (mLOY) is a common ageing-related somatic event and has been previously associated with Alzheimer’s disease (AD). However, mLOY estimation from genotype microarray data only reflects the mLOY degree of subjects at the moment of DNA sampling. Therefore, mLOY phenotype associations with AD can be severely age-confounded in the context of genome-wide association studies. Here, we applied Mendelian randomisation to construct an age-independent mLOY polygenic risk score (mloy-PRS) using 114 autosomal variants. The mloy-PRS instrument was associated with an 80% increase in mLOY risk per standard deviation unit (p = 4.22 × 10−20) and was orthogonal with age. We found that a higher genetic risk for mLOY was associated with faster progression to AD in men with mild cognitive impairment (hazard ratio (HR) = 1.23, p = 0.01). Importantly, mloy-PRS had no effect on AD conversion or risk in the female group, suggesting that these associations are caused by the inherent loss of the Y chromosome. Additionally, the blood mLOY phenotype in men was associated with increased cerebrospinal fluid levels of total tau and phosphorylated tau181 in subjects with mild cognitive impairment and dementia. Our results strongly suggest that mLOY is involved in AD pathogenesis.P.G.-G. (Pablo García-González) is supported by CIBERNED employment plan CNV-304-PRF-866. CIBERNED is integrated into ISCIII (Instituto de Salud Carlos III). I.d.R is supported by a national grant from the Instituto de Salud Carlos III FI20/00215. A.C. (Amanda Cano) acknowledges the support of the Spanish Ministry of Science, Innovation, and Universities under the grant Juan de la Cierva (FJC2018-036012-I). M.B. (Mercé Boada) and A.R. (Agustín Ruiz) are also supported by national grants PI13/02434, PI16/01861, PI17/01474, PI19/01240, and PI19/01301. The Genome Research @ Fundació ACE project (GR@ACE) is supported by Grifols SA, Fundación bancaria “La Caixa”, Fundació ACE, and CIBERNED. Acción Estratégica en Salud is integrated into the Spanish National R + D + I Plan and funded by ISCIII (Instituto de Salud Carlos III)—Subdirección General de Evaluación—and the Fondo Europeo de Desarrollo Regional (FEDER—“Una manera de hacer Europa”). Genotyping of the ACE MCI-EADB samples was performed in the context of EADB (European Alzheimer DNA biobank) funded by the JPco-fuND FP-829-029 (ZonMW project number 733051061). This work was supported by a grant (European Alzheimer DNA BioBank, EADB) from the EU Joint Program—Neurodegenerative Disease Research (JPND). Partial funding for open access charge: Universidad de Málag

    No supportive evidence for TIA1 gene mutations in a European cohort of ALS-FTD spectrum patients

    Get PDF
    We evaluated the genetic contribution of the T cell-erestricted intracellular antigen-1 gene (TIA1) in a European cohort of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) patients. Exonic resequencing of TIA1 in 1120 patients (693 FTD, 341 ALS, 86 FTD-ALS) and 1039 controls identified in total 5 rare heterozygous missense variants, affecting the TIA1 low-complexity domain (LCD). Only 1 missense variant, p.Met290Thr, identified in a familial FTD patient with disease onset at 64 years, was absent from controls yet received a combined annotation-dependent depletion score of 11.42. By contrast, 3 of the 4 variants also detected in unaffected controls, p.Val294Glu, p.Gln318Arg, and p.Ala381Thr, had combined annotation-dependent depletion scores greater than 20. Our findings in a large European patient-control series indicate that variants in TIA1 are not a common cause of ALS and FTD. The observation of recurring TIA1 missense variants in unaffected individuals lead us to conclude that the exact genetic contribution of TIA1 to ALS and FTD pathogenesis remains to be further elucidated

    Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study

    Get PDF
    Background Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson’s disease, and Alzheimer’s disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. Methods In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected by clinical teams after clinical examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also in only participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. Findings This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2·40, 95% CI 2·14–2·70; p=1·05 × 10–⁴⁸), SNCA (rs7681440; OR 0·73, 0·66–0·81; p=6·39 × 10–¹⁰), and GBA (rs35749011; OR 2·55, 1·88–3·46; p=1·78 × 10–⁹). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1·51, 1·27–1·79; p=2·21 × 10–⁶); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. Interpretation Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease

    A comprehensive screening of copy number variability in dementia with Lewy bodies

    Get PDF
    The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk. (C) 2019 Elsevier Inc. All rights reserved.Peer reviewe

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks : The GR@ACE project

    Get PDF
    Introduction: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. Results: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. Discussion: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/
    corecore