1,068 research outputs found

    Sentinel-2 Data Analysis and Comparison with UAV Multispectral Images for Precision Viticulture

    Get PDF
    Precision viticulture (PV) requires the use of technologies that can detect the spatial and temporal variability of vineyards and, at the same time, allow useful information to be obtained at sustainable costs. In order to develop a cheap and easy-to-handle operational monitoring scheme for PV, the aim of this work was to evaluate the possibility of using Sentinel-2 multispectral images for long-term vineyard monitoring through the Normalized Difference Vegetation Index (NDVI). Vigour maps of two vineyards located in northeastern Italy were computed from satellite imagery and compared with those derived from UAV multispectral images; their correspondence was evaluated from qualitative and statistical points of view. To achieve this, the UAV images were roughly resampled to 10 m pixel size in order to match the spatial resolution of the satellite imagery. Preliminary results show the potential use of open source Sentinel-2 platforms for monitoring vineyards, highlighting links with the information given in the agronomic bulletins and identifying critical areas for crop production. Despite the large differences in spatial resolution, the results of the comparison between the UAV and Sentinel-2 data were promising. However, for long-term vineyard monitoring at territory scale, further studies using multispectral sensor calibration and groundtruth data are required

    Quaternary deformation in SE Sicily: Insights into the life and cycles of forebulge fault systems

    Get PDF
    Integrated geological, geomorphological, and differential interferometry synthetic aperture radar (DInSAR) data are used to constrain the timing and modes of activity of Quaternary fault systems in the Hyblean Plateau. This area, which represents a unique natural laboratory for studying surface deformation in relation to deep slab dynamics, has grown since middle Miocene times as a doubly plunging forebulge associated with slab rollback during NW-directed subduction. Bimodal extension has produced two mutually orthogonal normal fault systems. The detailed stratigraphic record provided by synrift sediments and postrift marine terraces allowed us to define the timing of activity of an early Pleistocene, flexure-related fault system, thus constraining the duration of a typical foreland extensional tectonic event to ~1.5 m.y. Subsequent late Quaternary to present deformation was dominated by strike-slip faulting associated with NW-oriented horizontal compression. During this latest stage, regional uplift progressively increased toward the thrust front to the NW and was accompanied by differential uplift accommodated by dip-slip components of motion along active NNW-trending faults. The general active tectonic setting of the study area, characterized by NW-oriented horizontal compression consistent with major plate convergence, and the regional uplift pattern can both be explained within the framework of intraplate shortening and foreland rebound following complete slab detachment, a major geodynamic event interpreted to have taken place at ca. 0.7 Ma in southern Italy

    New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity

    Get PDF
    Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu2+ ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu2+ ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17–29 and 14–22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17–29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu2+ ions with Ac-PEG-hIAPP(17–29)-NH2, Ac-rIAPP(17–29)R18H-NH2, and Ac-PEG-hIAPP(14–22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu2+ ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14–22)-NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu2+ ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu2+ ions present in phosphate-buffered saline (PBS), and 3) a reducing fluorogenic probe on H2O2 production attributed to the polypeptide alone

    Probing the Residual Structure in Avian Prion Hexarepeats by CD, NMR and MD Techniques

    Get PDF
    Many proteins perform essential biological functions by means of regions that lacking specific organized structure exist as an ensemble of interconverting transient conformers. The characterization of such regions, including the description of their structural propensities, number of conformations and relative populations can provide useful insights. Prion diseases result from the conversion of a normal glycoprotein into a misfolded pathogenic isoform. The structures of mammal and chicken prion proteins show a similar fold with a globular domain and a flexible N-terminal portion that contains different repeated regions: octarepeats (PHGGGWGQ) in mammals and hexarepeats (PHNPGY) in chickens. The higher number of prolines in the hexarepeat region suggests that this region may retain a significant amount of residual secondary structure. Here, we report the CD, NMR and MD characterization of a peptide (2-HexaPY) composed of two hexarepeats. We combine experimental NMR data and MD to investigate at atomic level its ensemble-averaged structural properties, demonstrating how each residue of both repeats has a different quantified PPII propensity that shows a periodicity along the sequence. This feature explains the absence of cooperativity to stabilize a PPII conformation. Nonetheless, such residual structure can play a role in nucleating local structural transitions as well as modulating intra-molecular or inter-molecular interactions

    Congruency of genetic predisposition to lactase persistence and lactose breath test

    Get PDF
    The physiological decline of lactase production in adulthood, in some individuals, is responsible for the so-called “Lactose Intolerance.” This clinical syndrome presents with gastrointestinal and non-gastrointestinal symptoms following the consumption of dairy containing food. Lactose intolerance can be evaluated by means of the Lactose Breath Test (phenotype) and/or genetic evaluation of lactase-gene polymorphism (genotype). A comparison of the two tests was carried out in a large number of symptomatic adult subjects, which are selected and not representative of the general population. Congruency was as high as 88.6%. Among lactase non-persistent (genotype C/C), 14 subjects showed a negative Lactose Breath Test (LBT), possibly due to young age. Among lactase-persistent (genotype C/T), four subjects showed a positive LBT, which helps to diagnose secondary lactose intolerance. Symptoms, both gastrointestinal and extra-gastrointestinal, were reported by 90% of patients during the breath test. Clinical use of both tests in the same patients could be taken into consideration as a sharp diagnostic tool. We suggest considering the use of the genetic test after LBT administration, when secondary hypolactasia is suspected, for completion of diagnostic procedures

    Capillary barriers during rainfall events in pyroclastic deposits of the Vesuvian area

    Get PDF
    In the present paper, the capillary barrier formation at the interface between soil layers, which is characterized by textural discontinuities, has been analyzed. This mechanism has been investigated by means of a finite element model of a two-layer soil stratification. The two considered formations, belonging to the pyroclastic succession of the “Pomici di Base” Plinian eruption (22 ka, Santacroce et al., 2008) of the Somma–Vesuvius volcano, are affected by shallow instability phenomena likely caused by progressive saturation during the rainfall events. This mechanism could be compatible with the formation of capillary barriers at the interface between layers of different grain size distributions during infiltration. One-dimensional infiltration into the stratified soil was parametrically simulated considering rainfall events of increasing intensity and duration. The variations in the suction and degree of saturation over time allowed for the evaluation of stability variations in the layers, which were assumed as part of stratified unsaturated infinite slopes

    Changes associated with Ebola virus adaptation to novel species.

    Get PDF
    Motivation: Ebola viruses are not pathogenic but can be adapted to replicate and cause disease in rodents. Here, we used a structural bioinformatics approach to analyze the mutations associated with Ebola virus adaptation to rodents to elucidate the determinants of host-specific Ebola virus pathogenicity. Results: We identified 33 different mutations associated with Ebola virus adaptation to rodents in the proteins GP, NP, L, VP24, and VP35. Only VP24, GP and NP were consistently found mutated in rodent-adapted Ebola virus strains. Fewer than five mutations in these genes seem to be required for the adaptation of Ebola viruses to a new species. The role of mutations in GP and NP is not clear. However, three VP24 mutations located in the protein interface with karyopherin 5 may enable VP24 to inhibit karyopherins and subsequently the host interferon response. Three further VP24 mutations change hydrogen bonding or cause conformational changes. Hence, there is evidence that few mutations including crucial mutations in VP24 enable Ebola virus adaptation to new hosts. Since Reston virus, the only non-human pathogenic Ebolavirus species circulates in pigs in Asia, this raises concerns that few mutations may result in novel human pathogenic Ebolaviruses
    corecore