163 research outputs found

    Chronic disease prevention programs offered by Aboriginal Community Controlled Health Services in New South Wales, Australia

    Get PDF
    Objectives: To identify and describe chronic disease prevention programs offered by Aboriginal Community Controlled Health Services (ACCHSs) in New South Wales (NSW), Australia. Methods: ACCHSs were identified through the Aboriginal Health and Medical Research Council of NSW website. Chronic disease programs were identified from the Facebook page and website of each ACCHS. Characteristics, including regions, target population, condition, health behaviour, modality and program frequency were extracted and summarised. Results: We identified 128 chronic disease programs across 32 ACCHSs. Of these, 87 (68%) programs were broad in their scope, 20 (16%) targeted youth, three (2%) targeted Elders, 16 (12%) were for females only and five (4%) were for males only. Interventions included physical activity (77, 60%), diet and nutrition (74, 58%), smoking (70, 55%), and the Aboriginal and Torres Strait Islander Health Check (44, 34%), with 93 programs (73%) of ongoing duration. Conclusions: Chronic disease prevention programs address chronic conditions by promoting physical activity, diet and nutrition, smoking cessation and health screening. Most target the general Aboriginal community, a few target specific groups based on gender and age, and more than one‐quarter are time‐limited. Implications for public health: Chronic disease programs that are co‐produced with specific groups, based on age and gender, may be needed.Victoria Sinka, Pamela Lopez‐Vargas, Allison Tong, Michelle Dickson, Marianne Kerr, Noella Sheerin ... et al

    The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates

    Get PDF
    The Hamburg Ocean Primitive Equation model has undergone significant development in recent years. Most notable is the treatment of horizontal discretisation which has undergone transition from a staggered E-grid to an orthogonal curvilinear C-grid. The treatment of subgridscale mixing has been improved by the inclusion of a new formulation of bottom boundary layer (BBL) slope convection, an isopycnal diffusion scheme, and a Gent and McWilliams style eddy-induced mixing parameterisation. The model setup described here has a north pole over Greenland and a south pole on the coast of the Weddell Sea. This gives relatively high resolution in the sinking regions associated with the thermohaline circulation. Results are presented from a 450 year climatologically forced integration. The forcing is a product of the German Ocean Model Intercomparison Project and is derived from the European Centre for Medium Range Weather Forecasting reanalysis. The main emphasis is on the model's representation of key quantities that are easily associated with the ocean's role in the global climate system. The global and Atlantic northward poleward heat transports have peaks of 1.43 and 0.84 PW, at 18degrees and 21degrees N respectively. The Atlantic meridional overturning streamfunction has a peak of 15.7 Sv in the North Atlantic and an outflow of 11.9 Sv at 30degrees S. Comparison with a simulation excluding BBL shows that the scheme is responsible for up to a 25% increase in North Atlantic heat transport, with significant improvement of the depths of convection in the Greenland, Labrador and Irminger Seas. Despite the improvements, comparison with observations shows the heat transport still to be too weak. Other outstanding problems include an incorrect Gulf Stream pathway, a too strong Antarctic Circumpolar Current, and a too weak renewal of Antarctic Intermediate Water. Nevertheless, the model has been coupled to the atmospheric GCM ECHAM5 and run successfully for over 250 years without any surface flux corrections. (C) 2002 Elsevier Science Ltd. All rights reserved

    Monitoring boreal forest biomass and carbon storage change by integrating airborne laser scanning, biometry and eddy covariance data

    Get PDF
    AbstractThis study presents a comparison and integration of three methods commonly used to estimate the amount of forest ecosystem carbon (C) available for storage. In particular, we examine the representation of living above- and below-ground biomass change (net accumulation) using plot-level biometry and repeat airborne laser scanning (ALS) of three dimensional forest plot structure. These are compared with cumulative net CO2 fluxes (net ecosystem production, NEP) from eddy covariance (EC) over a six-year period within a jack pine chronosequence of four stands (~94, 30, 14 and 3years since establishment from 2005) located in central Saskatchewan, Canada. Combining the results of the two methods yield valuable observations on the partitioning of C within ecosystems. Subtracting total living biomass C accumulation from NEP results in a residual that represents change in soil and litter C storage. When plotted against time for the stands investigated, the curve produced is analogous to the soil C dynamics described in Covington (1981). Here, ALS biomass accumulation exceeds EC-based NEP measured in young stands, with the residual declining with age as stands regenerate and litter decomposition stabilizes. During the 50–70year age-period, NEP and live biomass accumulation come into balance, with the soil and litter pools of stands 70–100years post-disturbance becoming a net store of C. Biomass accumulation was greater in 2008–2011 compared to 2005–2008, with the smallest increase in the 94-year-old “old jack pine” stand and greatest in the 14-year-old “harvested jack pine 1994” stand, with values of 1.4 (±3.2) tCha−1 and 12.0 (±1.6) tCha−1, respectively. The efficiency with which CO2 was stored in accumulated biomass was lowest in the youngest and oldest stands, but peaked during rapid regeneration following harvest (14-year-old stand). The analysis highlights that the primary source of uncertainty in the data integration workflow is in the calculation of biomass expansion factors, and this aspect of the workflow needs to be implemented with caution to avoid large error propagations. We suggest that the adoption of integrated ALS, in situ and atmospheric flux monitoring frameworks is needed to improve spatio-temporal partitioning of C balance components at sub-decadal scale within rapidly changing forest ecosystems and for use in national carbon accounting programs

    Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust

    Get PDF
    Background: We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. Methods: HCWs at Sheffield Teaching Hospitals NHS Foundation Trust were prospectively enrolled and sampled at two time points. We developed an in-house ELISA for testing participant serum for SARS-CoV-2 IgG and IgA reactivity against Spike and Nucleoprotein. Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. Results: Our in-house assay had a sensitivity of 99·47% and specificity of 99·56%. We found that 24·4% (n=311/1275) of HCWs were seropositive as of 12th June 2020. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0–52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4–56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≀30 years. Conclusions: HCWs in acute medical units and those working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more severe COVID-19 cases

    The epitaxy of gold

    Full text link

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    New national and regional bryophyte records, 45

    Full text link
    • 

    corecore