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This study presents a comparison and integration of three methods commonly used to estimate the amount of
forest ecosystem carbon (C) available for storage. In particular, we examine the representation of living above-
and below-ground biomass change (net accumulation) using plot-level biometry and repeat airborne laser scan-
ning (ALS) of three dimensional forest plot structure. These are compared with cumulative net CO2 fluxes (net
ecosystemproduction, NEP) fromeddy covariance (EC) over a six-year periodwithin a jack pine chronosequence
of four stands (~94, 30, 14 and 3 years since establishment from 2005) located in central Saskatchewan, Canada.
Combining the results of the twomethods yield valuable observations on the partitioning of Cwithin ecosystems.
Subtracting total living biomass C accumulation from NEP results in a residual that represents change in soil and
litter C storage.When plotted against time for the stands investigated, the curve produced is analogous to the soil
C dynamics described in Covington (1981). Here, ALS biomass accumulation exceeds EC-based NEPmeasured in
young stands, with the residual declining with age as stands regenerate and litter decomposition stabilizes. Dur-
ing the 50–70 year age-period, NEP and live biomass accumulation come into balance, with the soil and litter
pools of stands 70–100 years post-disturbance becoming a net store of C. Biomass accumulation was greater in
2008–2011 compared to 2005–2008, with the smallest increase in the 94-year-old “old jack pine” stand and
greatest in the 14-year-old “harvested jack pine 1994” stand, with values of 1.4 (±3.2) tC ha−1 and 12.0
(±1.6) tC ha−1, respectively. The efficiency with which CO2 was stored in accumulated biomass was lowest in
the youngest and oldest stands, but peaked during rapid regeneration following harvest (14-year-old stand).
The analysis highlights that the primary source of uncertainty in the data integration workflow is in the calcula-
tion of biomass expansion factors, and this aspect of theworkflowneeds to be implementedwith caution to avoid
large error propagations.We suggest that the adoption of integrated ALS, in situ and atmospheric fluxmonitoring
frameworks is needed to improve spatio-temporal partitioning of C balance components at sub-decadal scale
within rapidly changing forest ecosystems and for use in national carbon accounting programs.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Net ecosystem production (NEP) represents the organic carbon
(C) balance of an ecosystem through the process of sequestration and
loss (Randerson, Chapin, Harden, Neff, & Harmon, 2002). Specifically,
this involves the processes of photosynthesis and C import,minus losses
to ecosystem respiration (Re), C export and non-biological oxidation of
C (Lovett, Cole, & Pace, 2006). Given linkages between atmospheric CO2

and global climate (IPCC, 2013), monitoring of continuously changing C
stocks, sources and sinks, as well as associated landmanagement or cli-
matic feedbacks, is required for effective greenhouse gas mitigation

strategies (Canadell et al., 2007). Spatialization and partitioning of eco-
system NEP enables improved understanding of atmospheric C seques-
tration in biomass growth, and therefore may be linked to national C
accounting programs, calibration of land surface models and diagnostic
assessment of the terrestrial biosphere (Jung et al., 2011).

Reporting of C gains and losses within the terrestrial biosphere has
increased in recent years as a result of these needs (Canadell et al.,
2007), with national reporting guidelines set by the United Nations
Framework Convention on Climate Change (UNFCCC). The need to de-
velop and refine sophisticated C monitoring techniques are further
realised through international programs like the REDD (Reducing Emis-
sions from Deforestation and forest Degradation) and GOFC-GOLD
(Global Observation of Forest and Land Cover Dynamics) programs. Ex-
amples of national agencies currently embarking on or supporting

Remote Sensing of Environment 181 (2016) 82–95

⁎ Corresponding author.
E-mail address: laura.chasmer@uleth.ca (L. Chasmer).

http://dx.doi.org/10.1016/j.rse.2016.04.010
0034-4257/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse



integrated remote sensing and in situ ecosystem-scale Cmonitoring and
research initiatives areNEON(National Ecological Observatory Network
Inc. USA, www.neonscience.org) and TERN (Terrestrial Ecosystem Re-
search Network, Australia, www.tern.org.ca).

Several monitoring strategies are currently in place to quantify
drivers of short-term C source/sink variability and longer-term changes
in ecosystemC stocks. However, approaches used to understand ecosys-
tem C differ in terms of spatial and temporal representation, as well as
the physical quantities being measured (Medvigy & Moorcroft, 2011).
This has the potential to create discrepancies in greenhouse gas
reporting across regions and between nations. For example, eddy co-
variance (EC)methods routinely provide estimates of the net ecosystem
exchange (NEE) of gains and losses of CO2 between soil, vegetation and
atmosphere over defined time periods and spatial extents. NEE is equiv-
alent but opposite in sign to NEPwhen inorganic C fluxes balance or are
negligible. Gross primary production (GPP) is NEP minus Re, though is
less directly observed, as ecosystem respiration (the combination of au-
totrophic and heterotrophic respiration) is usually modelled (Barr,
Morgenstern, Black, McCaughey, & Nesic, 2006; Griffis et al., 2003).
Over periods of 2 to 10 years, changes in GPP or NEP due to factors
like severe drought, fire or insect/pathogen disturbances may be moni-
tored (Barr et al., 2007; Ciais et al., 2005). However, because ECmethods
provide an aggregate estimate of C exchange, there are limits to how far
ecosystem process, composition changes or anthropogenic vs natural
influences can be partitioned or extrapolated over broad regions. Fur-
ther, large uncertainties exist with regards towithin-ecosystem process
interaction thereby limiting theuse of data-intensive ecosystembiogeo-
chemical models (Canadell et al., 2007).

Another C assessment option uses inventory methods to monitor
above and below-ground C pools within forest plots. Plots can be
revisited every few years to estimate rates of biomass accumulation
and partitioning associated with age, site history, and changes to man-
agement regime. Plot measurements can include direct sampling of liv-
ing biomass and other C pools including roots, detritus and litterfall.
These data can be used to estimate net primary production (NPP) of cu-
mulative biomass C stored within all above and below-ground compo-
nents (Law, Thornton, Irvine, Anthoni, & Van Tuyl, 2001). (Note, NEP
and NPP are parallel but distinct concepts, as NPP does not account for
heterotrophic respiration C losses). Above and below-ground biomass
measurements can be destructive, limited in spatial extent and tempo-
ral frequency because they are labour intensive (Curtis et al., 2002;
Gower et al., 1997; Lambert et al., 2005; Peichl & Arain, 2007, Zha
et al., 2013), and may not fully account for spatial variability
(Kristensen, Næsset, Ohlson, Bolstad, & Kolka, 2015). Despite such lim-
itations, in situ observations of temporal change in C stocks provide a
cumulative assessment of biomass C growth and loss (Barford et al.,
2001), which may allow for more direct partitioning of changes in C
pool quantities associated with climatic, disturbance and land manage-
ment drivers.

For long-term monitoring of plot-based C pools, measurement pro-
tocols need to be consistent to ensure accurate comparisons. A chal-
lenge associated with repetitive field sampling is the possibility that
by collecting measurements and samples (e.g. invasive root measure-
ments, trampling of understory, litter traps), the observer might alter
the growth trajectory of the plot or surrounding area (Cahill, Castelli,
& Casper, 2001; Semboli, Beina, Closset-Kopp, Gourlet-Fleury, & Decocq,
2014). Such concerns provide justification for refining and integrating
non-invasive C assessment techniques such as eddy covariance and re-
mote sensing (He, Chen, Pan, Birdsey, & Kattge, 2012; Kristensen et al.,
2015). To this end, airborne laser scanning (ALS) provides a non-
invasive spatially- and structurally-explicit scalingmechanism between
field-plot data and EC-based estimates of NEP within forest ecosystems.
ALS biomass models typically utilize regression relationships between
ALS canopy height profile metrics and plot-level biomass derived
using allometric equations. In comparison with EC and plot data, ALS
provides a one-time spatial characterisation of above-ground tree

biomass (Asner & Mascaro, 2014; Means et al., 1999; Næsset &
Gobakken, 2008; Popescu, Wynne, & Nelson, 2003). For time intervals
of three years or more, ALS has been demonstrated to accurately quan-
tify canopy growth rates (Hopkinson, Chasmer, & Hall, 2008; Hudak
et al., 2012; Næsset, Bollandsås, Gobakken, Gregoire, & Ståhl, 2013;
Næsset & Gobakken, 2005) and biomass change (Økseter, Bollandsås,
Gobakken, & Næsset, 2015; Skowronski, Clark, Gallagher, Birdsey, &
Hom, 2014). It is feasible, therefore, to develop a framework that
maps biomass C across the landscape, tracks changes through time
and then reconciles these remote sensing observations with NEP.

Given the proliferation of large area, even nation-wide, ALS cover-
ages in recent years (Wulder et al., 2012; Stoker, Cochrane, & Roy,
2013; Hopkinson et al., 2013) and new ecosystemmonitoring programs
like NEON and TERN in the USA and Australia, it is now logical and fea-
sible to incorporate ALS within an integrated C flux monitoring frame-
work. Indeed, this was a recommendation of a recent Fluxnet report
(Beland et al., 2015). ALS is already a recognized method for better
characterising flux tower site canopy structural variability (Chasmer
et al., 2008b) within approximately 44 international Fluxnet sites,
with at least 8 of these sites containing two or more temporal ALS
datasets (Beland et al., 2015). Furthermore, the work of Chasmer et al.
(2008a, 2008b and 2011) has provided the platform for such a frame-
work by developing and refiningmethods of ALS forest canopy attribute
integration with EC CO2 flux data.

While an integrated EC and ALS ecosystem Cmonitoring framework
is conceptually feasible, its implementation is challenged both as a re-
sult of: a) their currently being few sites around the world where
long-term EC NEP records have been collected in tandem with multi-
temporal ALS; and b) the subtle but critical differences in the way C
pools and fluxes are quantified in EC, ALS and plot measurement
methods. While plot-level monitoring can track changes in terrestrial
C pools at distinct locations, this differs to ALS observations that can
track above ground standing biomass changes across the landscape.
And both are distinct to EC NEP, which is inferred from the NEE of C be-
tween the ecosystem and atmosphere within the footprint of a flux
tower. Clearly then, each technique has distinct spatio-temporal do-
mains of representation and each observes slightly different compo-
nents of the terrestrial C cycle.

This paper addresses the disparate sampling and spatio-temporal
representations of ALS, plot and EC ecosystem C observations and intro-
duces a framework for data integration that, when combined, provides
more information on ecosystem C balance than is possible using each
method in isolation. The aim is to integrate all three approaches in a
manner that accounts for and capitalises upon the different C pool and
process representivity of each. A case study is presented to apply the
integrated C assessment framework within a chronosequence of
regenerating boreal forest stands over a six year period in an attempt
to better partition GPP andNEP as the stands progress from adolescence
to maturity.

2. Materials and methods

2.1. Study area

A chronosequence of four jack pine (Pinus banksiana Lamb.) stands,
located approximately 100 km northeast of Prince Albert, Saskatche-
wan, Canada (53°54′ N, 104°39′ W, ~490 m a.s.l.) were examined in
this study (Fig. 1). Jack pine is one of the most numerous boreal forest
species, covering an area of ~517,000 km2 of Canada and parts of the
northern USA (Little, 1971), and therefore represents an important
northern hemisphere component of global biomass. Two sites, a mature
stand (91–97 year old; Old Jack Pine (OJP)) and an intermediate-aged
stand harvested in 1975 (HJP75) were established during the Boreal
Ecosystem Atmosphere Study (BOREAS) (Sellers et al., 1995) in 1993.
Monitoring at the sites continued from 2001 to 2011 under the project
name: Boreal EcosystemResearch andMonitoring Sites (BERMS)within
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the Fluxnet Canada Research Network and the Canadian Carbon Pro-
gram (Barr et al., 2004; Coursolle et al., 2006; Zha et al., 2013). Two ad-
ditional jack pine stands, one harvested in 1994 (HJP94) and the other
in 2002 (HJP02) were added to the existing BOREAS and Fluxnet
Canada stands to complete the jack pine chronosequence (Fig. 1). Site
characteristics are described in Zha et al. (2013). Soils at the sites are
composed of glaciofluvial deposits, and are sandy and dry (Vogel &
Gower, 1998). The sites have slightly undulating topography, with a
maximum elevation variation of ~20 m within 1 km of the EC tower

at the OJP stand. In 2005, mean stand heights varied from 0.2 m to
14.2 m at HJP02 and OJP, respectively (Zha et al., 2013), with mean
leaf area index ranging from 0.3 m2 m−2 to 3.1 m2 m−2 at HJP02 and
HJP75, respectively (Chasmer et al., 2008a; Chen et al., 2006).

Long-term annual averages of minimum,mean, andmaximum daily
air temperatures for the nearest town site at Prince Alberta, SK
(~100 km south west) are −5.3 °C, 0.2 °C, and 7.1 °C, respectively,
while annual mean precipitation at Waskesiu Lake climate station
(~100 km west) is ~467 mm (1981 to 2010 Environment Canada

Fig. 1. A) Location of the jack pine chronosequencewithin the Canadian boreal forest [source: Brandt, 2009; region within which jack pine forests can be found is from Little (1971)]. Jack
pine stand extents overlaid onto a: B) digital elevation model (DEM); and C) canopy height model (CHM). Field mensuration (FM) plot locations initiated in 2005 are also shown.
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climate normal). Slightly above normal total precipitation depths were
observed throughout the period studied at Environment Canada's
Waskesiu Lake climate station, with three-year means of 585 mm and
522 mm for 2005–2008 and 2008–2011, respectively. Air temperatures
collected at the OJP flux tower indicate locally warmer conditions dur-
ing 2005–2008 than 2008–2011, with mean growing season (April to
September) temperatures of 13.0 °C and 12.5 °C, respectively. The
study followed a period of drought from 2001 to 2003, during which
local reductions were observed in ecosystem productivity (Kljun et al.,
2007) and light use efficiency (LUE) (Chasmer et al., 2008a).

2.2. Conceptual framework

A simple conceptualisation of important terrestrial ecosystem C
pools within a regenerating forest stand and their representation
using different measurement methods is presented in Fig. 2 and pro-
vides the basis for the analysis presented. ‘Understory’ in Fig. 2 repre-
sents living shrubs, small trees and vegetation ground cover; ‘litter’
encompasses fine and course woody debris as well as decaying under-
story biomass; ‘root’ represents both fine and coarse components;
‘soil’ encompasses both organic and mineral components. C exchanges
due to the import or export of inorganic sediments and animal move-
ment is ignored or assumed to balance over long enough time periods.
Dissolved Organic Carbon (DOC) is illustrated in Fig. 2 as it represents
a potential C export. The brackets and text at right side of Fig. 2 illustrate
how each measurement technique samples either an aggregate ecosys-
temC response through time (NEP) or distinct pools of Cwithin the eco-
system (ALS and plots).

The implicit assumption in Fig. 2 is that if all terrestrial organic C
pools can be monitored through time, then the change in total organic
C (ΔΤC) can be reconciled with NEP. Following Lovett et al. (2006):

NEP ¼ ΔΤCþ Eþ Oxnb−I ð1Þ

where E represents exports of C, such as by harvest or by leaching of
DOC; I represents imports, such as by animal movement or wind trans-
port; andOxnb is the non-biological oxidation of C,whichmay occur as a
result of fire or ultraviolet oxidation (Lovett et al., 2006). For the

purpose of this analysis, the BERMS sites are assumed balanced in
terms of major imports and exports of organic C, and oxidation is con-
sidered a negligible component, as there have been no fires in these
stands in recent decades. The most likely organic C export at the
BERMS chronosequence would be DOC in groundwater but this has
been shown to be a negligible component of the C balance with export
values of ~0.002 tC ha−1 (Grant et al., 2007). Therefore, we can formu-
late the following simple relationship:

NEP≈ΔΤC ¼ ΔSLCþ ΔUCþ ΔRCþ ΔLCþ ΔSC: ð2Þ

Further, by assuming that the living understory and root compo-
nents of a regenerating stand increase in biomass each year in concert
with the standing livingwoody or tree biomass, we can estimate the un-
derstory and root C pools as a function of the generally larger standing
live C pool (e.g. Kristensen et al., 2015):

SLCþ UCþ RCð Þ ¼ f SLCð Þ: ð3Þ

Then:

NEP≈ f ΔSLCð Þ þ ΔLCþ ΔSCð Þ: ð4Þ

Thus, NEP is equated to a function of the change in above ground live
biomass that can be modelled from ALS, with a residual term that is as-
sociated with the changes in C storage within the litter and soil zone.
The f(ΔSLC) term represents the change in C within the total living bio-
mass components (TLC) associated with tree stems, understory and
roots and therefore:

ΔTLC≈NEP− ΔLCþ ΔSCð Þ: ð5Þ

This rearrangement facilitates a direct comparison of ecosystem C
storage change estimates that can be generated from ALS and EC tech-
niques. The litter, soil and export residual components of this C balance
represent an important bulk quantity of forest ecosystem C store that
can now be resolved.

Fig. 2. A conceptual diagram illustrating how primary elements of ecosystem organic C in a regenerating forest can be tracked in time (t1 to t2) using eddy covariance, airborne laser
scanning and C pool plots.
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2.3. Eddy-covariance data

In this study, NEP =−NEE and GPP is determined from NEP minus
ecosystem respiration (Re). Half-hourly fluxes of Atmospheric CO2

(converted to tC ha−1) were measured at each of the jack pine
chronosequence sites using standardized Fluxnet ECmethods following
Griffis et al. (2003), Barr et al. (2006) and Zha et al. (2013), and all data
were corrected for energy balance closure (Barr et al., 2006; Barr et al.,
2013). Due to the length of the study and remote nature of the sites, oc-
casional instrument malfunction led to data gaps exceeding one year
within three out of the four site datasets. Complete annual NEP mea-
surements were available as follows: HJP02 (2003–2007); HJP94
(2001–2004; 2009–2011); HJP75 (2004–2007, 2010), and OJP (2000–
2011; i.e. no inter-annual data gaps). While caution must be exercised
with the interpretation of younger site NEP andGPP during data gap pe-
riods, two methods for filling these gaps were tested in order to con-
struct cumulative NEP records: a) linear regression model between
annual NEP and stand-age for periods when data exist; b) comparison
of GPP and NEP from EC estimates with the GPP/PSN (photosynthesis,
NPP) MODIS (MOD17A2_5.1) data products downloaded from (odaac.
ornl.gov) for the tower pixel (Zhao, Heinsch, Nemani, & Running,
2005). Based on the results of this gap-filling comparison (presented
below) and previous observations that NEP correlates well with stand-
age (Zha et al., 2013), gap filling using the age-interpolation was ulti-
mately chosen.

2.4. Plot biometric measurements

Two distinct types of field plots have been used in this study. The
first are termed ‘forest mensuration plots’ (FM plots) and the second
‘C pool plots’ (CP plots). Both types made biomass measurements (de-
tailed below) and utilised allometric equations to calculate tree and
plot-level dry biomass in tC ha−1 (Lambert, Ung, & Raulier, 2005). Dry
biomass estimates were converted to C by assuming 50% of dry biomass
is C (Atjay, Ketner, & Duvigneaud, 1977; Pregitzer & Euskirchen, 2004).
FM plots of standing live biomass C (SLCplot) were used to calibrate an
ALS model, while the purpose of the CP plots was to allow partitioning
of theprimary above- andbelow-ground biomass C pools so that the liv-
ing biomass components of SLC, UC and RC could be related as per Fig. 2
and Eq. (3). Via this approach, ALS estimates of SLC could be expanded
to account for all live biomass components (see below).

Coincident with the August 2005 ALS data collection (described
below), eight, eight and six FM plots were set up at OJP, HJP75, and
HJP94, respectively, for the explicit purpose of calibrating ALS forest at-
tribute models (Chasmer et al., 2008b). The circular FM plots had radius
of 11.3 m and were installed at radial distances of 100 m and 500 m
(OJP, HJP75), and 100 m and 200 m (HJP94) from the flux towers at
each site (Fig. 1). Plots were accurately located (b40 cm 95% CI) using
N20 min rapid-static dual-frequency global positioning system (GPS)
rover occupations relative to a GPS base station set over a fixed control
marker in HJP02 b 10 km from each stand. Accurate FM plot location
was critical to ensure field biomass data were precisely co-located
with the ALS point cloud for subsequent SLC model construction. Mea-
surements included diameter at breast height (DBH) and stem height
for every tree with a DBH N 2 cm (Table 1). No ground cover or root bio-
mass measurements were made at FM plots. Due to the immature re-
generative state of HJP02 at the time of field visits (3 years after clear
cut), biomass measurements were not collected at HJP02.

During the period 2005–2011, no CP plots were acquired but an ar-
chive of CP plot data from 1994 to 2004 was obtained: a) eight plots
established in 1994 by Gower et al. (1997) at OJP and HJP75; b) five
plots established in 1999 by Howard et al. (2004) at OJP, HJP75 and
HJP94; c) three repeats of the Gower et al. (1997) OJP plots measured
in 2004 by Theede (2007). As the CP plot data were collected across
three historical studies, the range in available plot-level detail was var-
iable. Raw data were available from Theede (2007), individual plot

summaries from Howard et al. (2004), and aggregate summaries from
Gower et al. (1997).

It is known that the inter-relationship between living biomass com-
ponents varieswith age (e.g. Lehtonen,Makipaa, Heikkinen, Sievanen, &
Liski, 2004; Peichl & Arain, 2007), so these plots, were used to develop a
stand age-variant expansion factor (e) for total live biomass C (TLC) as a
function of SLC. The locations of the CP plots are only approximately
known but accurate positioning was not important, as they were not
used in the calibration of ALS data. The e factor was derived as follows:

TLC ¼ e� SLC: ð6Þ

Following the above CP plot-level calculation, the resultant e factor
was regressed against stand-age (a), to generate an age-variant e func-
tion, whichwas applied to SLC data derived from ALS in 2005, 2008 and
2011.

2.5. ALS data collection and processing

ALS data were collected during clear-sky conditions over each of the
study sites in August 2005, 2008 and 2011 using a small-footprint
multiple-discrete-return Airborne Laser Terrain Mapper (ALTM)
3100C (Teledyne Optech Inc., Toronto), operated with equivalent flight
and sensor settings resulting in an aerial sampling density of N2 pts
m−2. ALS point clouds were flight-line matched and classified into
ground and non-ground returns using Terrascan (Terrasolid, Finland),
and subsequently converted to 1 m raster triangulated irregular net-
work digital elevation models (DEMs), localized maxima digital surface
models (DSMs) and canopy height models (CHMs), whichwere the dif-
ference between the DEM and DSM. All raster grids were generated in
Surfer (Golden Software, Denver, CO). CHM growth between data col-
lections was estimated based on a 3 m × 3 m grid-size change in maxi-
mum height to reduce uncertainty due to small shifts in tree top
position. Areal canopy cover losses, primarily associatedwith stemmor-
tality, were illustrated at CHM grid nodes where the value had de-
creased by N2 m.

2.6. Estimating total living biomass C stocks from ALS

Standing live biomass C determined per 2005 FM plot (SLCplot), was
used to construct ALS standing live biomass C (SLCALS) models based on
a variety of commonly used point cloud metrics described below. Point
cloud data were first extracted within geo-registered 2005 FM plot ex-
tents and normalised to a height above ground-level by computing ele-
vation residuals relative to the DEM. Point cloud metrics were derived
on a per-plot basis and regressed against SLCplot. The following metrics
were tested for all returns and all returns above 0.2 m (to remove
ground influence and any near-ground noise in the data): mean, maxi-
mum, standard deviation, inter-quartile range (IQR), height percentiles
[P25, P50, P75, P90, P95, P99] and the following ratios: i) all returns/all
returns above 1.5m, ii) all returns/all returns above average height, and
iii) all returns/all first returns above 1.5 m. Single and dual variable lin-
ear, power, log and exponential models were tested. An optimal ALS
model was chosen, based on predictive capability and consistency of
its application to different datasets through time; i.e. if a model
reproduced accurate plot-level biomass estimates for the year of plot
and ALS sampling (2005) but produced noisy or biased biomass esti-
mates when applied to 2008 or 2011, it was ignored. Temporal FM
plot data were not available to test the ALS model in 2008 or 2011, so
judgement was exercised based on field observations of canopy condi-
tions at each site. For these reasons, if the explanatory power of a simple
univariate or linear model was statistically equivalent to a more com-
plexmultivariate or non-linearmodel, then it was chosen; i.e. simplicity
was preferred over complexity in the absence of more quantifiable de-
cision criteria. The assumption is that a simpler technique may not al-
ways produce the highest accuracy model but it should be more
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robust for comparative analyses across a range of datasets containing di-
verse canopy heights and densities (e.g. Hopkinson, Chasmer, Lim,
Treitz, & Creed, 2006).

Following selection of a suitable SLCALS model, it was applied to the
point clouds across the entire jack pine study area. Modelled data
were gridded at 20 m × 20 m grid cell resolution to be equivalent in
area to the 400 m2 FM plots used in calibration and ensure adequate
ALS returns (typically 600 to 1000 points) in each cell for percentile-
or ratio-based model implementation. The previously derived expan-
sion factor, e, was applied to SLCALS grids per Eq. (6) to estimate total
live biomass C (TLCALS) across all stands for each year of ALS data
(2005, 2008 and 2011). Confidence intervals (95% CI) were calculated
to describe the range of rasterised jack pine TLCALS variability in:
a) 2005 mensuration FM plot locations (number of grid cells (n) = 32
for HJP75 and OJP, and 24 at HJP94); and b) each stand (n N 10,000
grid cells). The change in TLCALS (ΔTLCALS) or net live biomass accumu-
lation was calculated by differencing the grid models and summarising
by stand and plot locations.

2.7. Footprint extraction

In order to compare spatial biomass changes mapped from remote
sensing with flux-tower measurements of NEP, the two data types
must be reconciled to a common spatial and temporal reference frame.
This is achieved by modelling the spatial extent of the EC flux footprint
for the time period of interest (Vesala et al., 2008; Leclerc & Foken,
2014). The flux footprint is defined as the probability of flux contribution
per unit area upwind of EC instrumentation (Kljun, Calanca, Rotach, &
Schmid, 2004; Kljun, Rotach, & Schmid, 2002; Schmid, 1994). A raster-
based footprint parameterization based on Kljun et al. (2004) was used
to map EC-sampled source/sink areas per half-hour period. Following
the methods of Chasmer et al. (2011), the half-hourly footprints were
then totalised over entire years to determine appropriate grid-cell
weightings ofΔTLCALS around each of the EC towers. Footprintweighting
provides the most spatially comparable estimate of ΔTLCALS to EC-based
estimates of GPP and NEP. The year nearest to the 2008 ALS dataset col-
lected at the midpoint of the time series was chosen (HJP94: 2009;
HJP75: 2007; OJP: 2008) to represent median stand-level canopy struc-
ture conditions, which were necessary inputs for the footprint parame-
terization (Chasmer et al., 2008b and 2011). The 95% CI of the within-
flux-footprint ΔTLCALS was calculated from all grid cells within the foot-
print probability density function 90% contour (n N 5000 and varies with
footprint extent).

2.8. Comparative analyses

As a test of plot-location stand representivity, samples of TLCALS data
were extracted for each of the FMplot locations (four grid cells per plot),
summarised and compared to stand-level TLCALS. Then stand- and plot-
level TLCALS estimates were compared for each of the stands and the
three sample periods to quantify differences in total live biomass C

with stand-age. Due to close proximity and comparable soil conditions,
it was assumed the stands do not differ significantly in terms of fertility
or climatic inputs and thus their age is the primary control on their re-
sponse to external drivers. A time-series of stand-level TLCALS was plot-
ted as a function of stand-age to visually assess whether or not the
biomass accumulation trends at individual stands, were consistent
with the chronosequence as a whole. CP plot estimates of TLC collected
during the 11 years prior to the ALS missions were also included in this
analysis for comparison, as they extended the age range represented.

The ΔTLCALS results were also compared with EC-based GPP at
stand-level (for comparable years) and then with NEP at footprint-
level (using gap filled data). A ΔTLCALS/GPP ratio is here considered an
index of the efficiency with which C sequestered during photosynthesis
has been stored in inter-annual total live biomass accumulation for each
of the jackpine stands. For the purpose of this study, this ratio is referred
to as live C use efficiency (LCUE). To further assess spatial sampling in-
fluences on biomass accumulation estimates, total live biomass accu-
mulation (ΔTLCALS) at FM plot-locations, stands and within EC tower
footprints were compared. Finally, the footprint-weighted ΔTLCALS

data were subtracted from NEP to derive the residual (NEP− ΔTLCALS),
which as per Eq. (5) represents the combination of changes in C storage
in the litter and soil C pools (ΔLC + ΔSC). This last step partitions eco-
system C into more fundamental quantities than either ALS or EC
methods can directly infer and, therefore, presents new information
about the ecosystem C balance.

3. Results

3.1. Gap filling NEP

MODIS GPP overestimated EC GPP and correspondence was poor
within younger sites requiring gap-filling, while the PSN product is
not comparable to NEP estimated using eddy covariance methods and
therefore was not used. Linear regression and interpolation between
NEP and stand-age was, however, sufficient for use as an inter-annual
NEP gap filling approach. OJP is the oldest of the sites and thus the
least likely to demonstrate any relationship between annual NEP and
stand age (r2 = 0.04). At HJP75, NEP is missing from 2008 to 2009,
but for remaining years NEP increases linearly with age (r2 = 0.70).
The gap at HJP94 (2005–2008) is bracketed by four years prior and
three years following, and the age-dependent linear relationship was
strong (r2 = 0.92). Missing data during years 2008–2011 at HJP02
(stand age of 6 to 9 years) were filled based on the linear regression of
HJP02 NEP data from 2003 to 2007 and data from HJP94 (stand age 7
to 10 years) (r2 = 0.86). The proportions of gap-filled EC NEP data are
0% (OJP), 28% (HJP75), 36% (HJP94) and 44% (HJP02). Annual climatic
variability may influence CO2 uptake and biomass growth at jack pine
chronosequence sites, especially during warm, dry years (Grant et al.,
2007), but the influence of climate on annual NEP residuals from the
age-variant linear regression trend at younger sites (HJP02, HJP94 and
HJP75) is not found to be significant (p = 0.45; 0.37 and 0.78,

Table 1
Summary of jack pine stand CP and FM plot measurements from four historical datasets.

Author Gower et al. (1997) Howard, Gower, Foley, and
Kucharik (2004)

Theede (2007) Chasmer et al. (2008b)

Year 1994 1999 1994, 2004 2005
Number of plots (type) 8 (CP) 5 (CP) 3 (CP) 22 (FM)
Plot size (m2), shape 56 (HJP75), 625 (OJP), square 625, square 625, square 400, circle
Plot measurements Tree number, DBH Tree number, DBH Tree number,

DBH
Tree number, DBH,
tree height, understory

Number of sub-plots 4 4 3 0
Sub-plot measurements Destructive sampling of seedlings, shrubs,

herbs, mosses, all oven-dried
Per Gower et al. Per Gower et al. N/A

Litter-traps Periodically emptied and oven-dried Per Gower et al. Per Gower et al. N/A
Mineral soil C content Coarse roots, fine roots coarse roots; 10 soil cores; fines Per Gower et al., N/A
Coarse woody debris 10 m transects 10 m transects 10 m transects N/A
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respectively). Cumulative annual precipitation is within 23% of the 6-
year average and average air temperatures are within 2 °C.

3.2. Growth and loss of jack pine from 2005 to 2011

The ALS CHM changes from 2005 to 2011 (Fig. 3) indicated annual
canopy height growth rates (mean ± 1 s.d.) of 0.09 ± 0.70 m y−1 at
OJP; 0.28 ± 0.09 m y−1 at HJP02; 0.39 ± 0.16 m y−1 at HJP75; and
0.63 ± 0.22 m y−1 at HJP94. While all stands displayed net vertical
growth, areal loss of canopy cover (or increase in canopy gaps) over
the 6-year period was b16% at OJP, and ≤1% for younger stands. Minor
tree stem or canopy cover losses within the OJP stand appear randomly
distributed but mostly within 500m of the EC tower. There are two no-
ticeable clusters of canopy loss within or close to the periphery of the
stand. One on the northwest side of OJP, adjacent to a small escarpment
~1 km from the flux tower, and another surrounding a small boreal
pond ~1 km east of the tower. Other areas of canopy cover reduction
are found north of HJP75 and south, east and west of the HJP02 stand.
The large areas of loss surrounding HJP02 are due to post-harvest mor-
tality and/or selective thinning.

3.3. Total live carbon estimates from airborne laser scanning

In 2005, FM plot-level standing live C (SLCplot) within the
chronosequence ranged from 0.8 tC ha−1 at HJP94 to 50.9 tC ha−1 at
OJP. Plot-level SLCALS regression model results are presented in
Table 2. The most highly correlated univariate regression model was a
power function of the average height of the ‘all return’ point-cloud dis-
tribution (Avgall) (r2 = 0.98, RMSE = 2.4 tC ha−1, n= 22). This model
was not chosen, however, for the following reasons: i) it did not pass
through the origin, resulting in physically impossible negative SLC pre-
dictions from plot data; ii) outside the height range of the training
dataset, SLCALS increased unrealistically for small increases in Avgall;
iii) when applied to 2008 and 2011 datasets, comparisons illustrated
unrealistic changes in SLCALS over locations where biomass was accu-
mulating at a relatively steady state. From Table 2, it is evident that sim-
ple linear models with zero origin produced model results that were
comparable to non-linear models.

The optimal model based on regression results, temporal compari-
sons and physical basis was one using a scaling function of the all return
point-cloud interquartile range (IQRall) (r2= 0.96, RMSE=3.2 tC ha−1,
n=22) (Fig. 4). IQRall is an appropriate predictor of SLCplot because it is

Fig. 3. Growth and loss of canopy between 2005 and 2011: a) OJP; b) HJP75; c) HJP94; and d) HJP02. Each scale bar is 1 km in length.
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an index of the overall ground to canopy point-cloud distribution height
and density, and, unlike other percentile metrics, has low sensitivity to
distribution tails.

The expansion factor e to convert SLC to TLC (Eq. (6)) is presented as
an age-variant function in Fig. 5. One of two (HJP94), and two of three
(HJP75) single stand measurement periods had e factors outside of the
95% confidence interval. While the data sources have been collected by
different individuals and there is a possibility for variations inmethodol-
ogy and data quality (Table 1), it is clear that e decreases with increasing
stand-age (Lehtonen et al., 2004; Peichl & Arain, 2007), approaching sta-
bilization at OJP (Dickson, 1989; Tobin & Nieuwenhuis, 2007).

Applying the IQRall model of Fig. 4 to derive SLC, and expanding
based on Eq. (6) and the function in Fig. 5 to derive TLC, results in the
following expression:

TLCALS ¼ 8:5� IQRall � a−0:131 ð7Þ

where (a) is stand-age (years). Applying Eq. (7) to the gridded IQRall

ALS data for each of the four jack pine stands produces a spatially explic-
it map of total living biomass C across the landscape (Fig. 6). Note the
spatial variability in TLCALS across each of the stands. In particular, OJP
tends to illustrate elevated biomass values at greater distances from
the flux tower, while HJP75 and HJP94 both indicate lower biomass
levels on the northeast side of the stands. Also note that TLCALS for the

HJP02 stand (Fig. 6d) relied on extending the SLCALS model (Fig. 4) to
zero and extrapolating Eq. (7) outside the range of e factor observations
(Fig. 5). Consequently, the uncertainties associatedwith the 2005HJP02
TLCALS estimates are indeterminate.

3.4. Comparisons between modelled live biomass, biomass accumulation
and GPP

Stand-level TLCALS was consistently greater than the mean plot-
location estimates but were within the 95% confidence interval
(Table 3). Proportional differences are greatest at HJP94, where stand
biomass exceeds the plot mean by up to 26%. At OJP, stand estimates
were consistently ~5 tC ha−1 or ~10% higher than plot means. The
greatest retention of C in biomass accumulation occurs in HJP94, follow-
ed by HJP75, while LCUE is smallest at the youngest and oldest stands.

Plotting mean stand-level TLCALS against age for all stands and sam-
ple years produces a Sigmoidal growth trend (Fig. 7). Biomass accumu-
lation rates are small up to approximately 10 years, then increase at the
greatest rate between 10 and 30 years of age, and finally decrease as
stands approach maturity. Field plot-level biomass TLC data (Howard
et al., 2004; Theede, 2007; and the Fluxnet DIS archive) are comparable
to ALS modelled estimates, except for OJP where the Howard et al.
(2004) and Theede (2007) plots demonstrate a large negative deviation
(N10 tC ha−1) from the Sigmoidal growth curve (Fig. 7). While there is
no temporal overlap between these historical plot data, the 95% confi-
dence limits in field plot data (80 to 90 years) and stand-level TLCALS
data (91 to 97 years) overlap, indicating the sample populations share
common values at individual plot and grid cell-levels. Further, while
the locations of these historical plots are not accurately known and can-
not be directly compared to ALS results, it is known that they are close to
the EC flux tower. As observed in Fig. 6, total biomass in the 500m area
surrounding the OJP tower is visibly lower (N5 tC ha−1) than most of
the stand, so it is likely that a high proportion of the historical CP plot
data represent areas containing lower biomass levels than the mean
for the entire stand.

3.5. Comparing total live biomass accumulation with NEP

Flux footprint-weights and extents are illustrated over ΔTLCALS for
each of the three older stands in Fig. 8. Table 4 provides a summary of
the FMplot-location, stand and footprint-weighted estimates of average
annual total live biomass C accumulation and NEP at each site. Differ-
ences between plot, stand and footprint-weighted ΔTLCALS (Table 4)
are not significantly different (based on a paired two-sample t-test for
means). Greatest similarity exists between plot- and footprint-level
ΔTLCALS (p = 0.38), while larger differences are found between plot-

Table 2
Plot-level SLCALS model results at the BERMS jack pine stands. (All models are significant
for p b 0.05), where P = percentile; Max = maximum height; Avgall = average height
of all returns; SD = standard deviation of all returns; IQRall = interquartile range of all
returns; All/1.5 = fractional cover of all returns/all returns above 1.5 m; and All/avg =
fractional cover of all returns/all returns above average height.

Point-cloud
metric

r2 (all returns) r2 (all returns N0.2 m)

Linear model
through origin

Non-linear
model

Linear model
through origin

Non-linear
model

P25 0.41 0.53 0.45 0.79
P50 0.09 0.43 0.92 0.96
P75 0.96 0.97 0.94 0.94
P90 0.95 0.97 0.93 0.93
P95 0.94 0.96 0.92 0.93
P99 0.92 0.92 0.91 0.91
Max 0.9 0.91 0.9 0.91
Avgall 0.97 0.98 0.9 0.93
SD 0.95 0.96 0.91 0.91
IQRall 0.96 0.97 0.56 0.87
All/1.5 0.62 0.91 0.6 0.88
All/avg 0.34 0.75 0.24 0.81

Fig. 4.Optimal single variable linear regressionmodel of FMplot-level standing live C from
theALS point-cloud inter-quartile range of all returns (IQRALL). Dashed lines are 5th/95th %
confidence limits.

Fig. 5. Stand age-dependent biomass expansion function (e) for comparable CP plot data
(HJP94, HJP75 and OJP). Mean power-function trend line (solid line) and 5th/95th %
confidence limits (dashed lines) are illustrated.
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and stand-level (p = 0.12) and between stand- and footprint-level
(p=0.15). When comparing footprint-weighted ΔTLCALS with average
NEP, the differences for each stand exceed the 95% CI in NEP but are not
in themselves significant at the 95% level of confidence (p=0.18). This
demonstrates that a high proportion of NEP is captured in the ALS-based
model of total live biomass C accumulation.

The change in total live C estimated from footprint-weighted
ΔTLCALS demonstrates a higher rate of C accumulation in biomass than
average NEP at the immature HJP94 and HJP75 stands, whereas at the
mature OJP stand the opposite occurs (Table 4 and Fig. 9). The residual
component, NEP − ΔTLCALS (described in Eq. (5)), represents the
change in soil and litter C storage (ΔSC + ΔLC) associated with

Fig. 6. Spatially explicit map of TLCALS for the jack pine chronosequence stands in 2005. Each scale bar is 1 km in length.

Table 3
BERMS stand- and FMplot-location TLCALS estimates and the associateddifferences betweenyears surveyed. Also shown is the LCUE ratio ofΔTLCALS tomeanGPP for the study period (GPP
periods vary due to data availability).

Stands Mean TLCALS (tC ha−1) (±95% CI) ΔTLCALS (tC ha−1) ΔTLCALS/GPP
2005–2011a

2005 2008 2011 2005–08 2008–11 2005–11 %GPP

HJP02 N/A 0.35 (±0.03) 1.00 (±0.09) N/A 0.7 N/A 1%
HJP94 1.80 (±0.16) 7.00 (±0.67) 13.76 (±1.38) 5.2 6.8 12.0 (±1.6) 34%
HJP75 28.93 (±3.27) 30.86 (±3.56) 34.42 (±4.03) 1.9 3.6 5.5 (±1.7) 10%
OJP 54.47 (±7.52) 54.94 (±7.63) 55.87 (±7.80) 0.5 0.9 1.4 (±3.2) 4%

Plots
HJP94 1.65 (±0.25) 5.54 (±0.86) 11.83 (±1.75) 3.9 6.3 10.2 25%
HJP75 28.34 (±4.43) 30.50 (±4.87) 33.96 (±5.60) 2.2 3.5 5.6 12%
OJP 49.58 (±8.17) 50.30 (±8.54) 51.15 (±8.44) 0.7 0.9 1.6 9%

a Eddy-covariance (EC) data availability varies per year and per site. Ratios are for periods when there were EC data.
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necromass C. The interpolated curve in Fig. 9, therefore, suggests the soil
and litter C pools are a source of ecosystem C in immature stands and a
sink of C in older stands.

4. Discussion

4.1. Plot location and within site representivity

Stand-level estimates of TLCALS were greater than mean plot-
location estimates at all sites (Table 3). These differences suggest that
the FM plots chosen in 2005 to be within the EC flux footprints, while
distributed on a pre-determined radial grid up to 500 m from the flux
towers (Fig. 1), have systematically over-represented areas of slightly
lower biomass (N5 tC ha−1) than is typical across the complete stand
area. This does not invalidate the ALS models, as the plots represent
the range of biomass experienced in the stands but it does illustrate
that aggregate plot-based estimates of biomass may not characterise
the spatial domain they are assumed to represent. This is further illus-
trated in Fig. 7, where the CP plot estimates of total live biomass C fall
below the more spatially explicit ALS estimates.

Furthermore, the CP plots sampled for OJP by Gower et al. (1997);
Howard et al. (2004) and Theede (2007)were from25m×25m square
plots that were revisited by different teams. This suggests two addition-
al factors: i) geometry dictates that unless corner positions, angles and
side lengths are accurately surveyed there is a possibility of systematic
under-estimation of the area. Even if all side lengths are accuratelymea-
sured, if any corners ≠90° the area will be smaller than that of a perfect
square. Similarly, if side lengths are measured along a ground slope in-
stead of horizontally, a systematic areal under-estimate will occur.
Therefore, the most likely error in the establishment of a square plot is

Fig. 7. Total live biomass (TLCALS) accumulation with stand age for the jack pine
chronosequence, with comparable plot-level summaries. Error bars represent 95%
confidence limits for field plot or stand-level data. [Note: Sigmoid curve plotted through
stand TLSALS data only (n = 11, r2 = 0.99).]

Fig. 8. Total live biomass accumulation (ΔTLCALS) from 2005 to 2011 for the three older jack pine stands. The 90th percentile cumulative extent and relative concentrationweighting of the
annual flux footprint is presented. [Note: HJP02 is not included, as biomass could not be accurately modelled for 2005.]
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to underestimate area and total biomass; ii) in observations analogous
to Heisenberg's Uncertainty Principle (Heisenberg, 1927), Cahill et al.
(2001) found that repeat vegetation plot measurements altered plant
structure and impacted rates of herbivory. In a similar study by
Semboli et al. (2014), it was found species composition in permanent
sample plots varied as a result of repeatmeasurements. Since the estab-
lishment of BOREAS in 1993, there has been many data collection and
equipment installation visits to the region surrounding the flux towers.
While it is not known if either of the above factors has impacted bio-
mass levels, the possibility of systematically reduced biomass estimates
in historical plot data (as observed in Fig. 7) cannot be discounted. Sim-
ilarly to the FM plots, this does not invalidate the use of the CP plots for
biomass expansion factor development but it does indicate that it is not
advisable to extrapolate ecosystem estimates of total biomass C from a
small number of plots, while further supporting the implementation
of non-invasive sampling techniques such as ALS.

4.2. Biomass growth and carbon accumulation

Total live biomass accumulation (TLCALS) over the six years at the
stand-level was 12.0 (±1.6) tC ha−1 at HJP94, 5.5 (±1.7) tC ha−1 at
HJP75, and 1.4 (±3.2) tC ha−1 at OJP, indicating reduced biomass accu-
mulation with stand age. However, biomass accumulation was slightly
greater at these three sites between 2008 and 2011, relative to 2005–
2008 (Table 3). Given the accelerated growth expected at HJP94 as the
young stand ages (Fig. 7), this is to be expected. However, HJP75 and
OJP also demonstrated increased growth increment in the latter period
despite both stands being beyond the age of accelerating growth as in-
ferred from the growth curve (Fig. 7). Despite the warmer and wetter
conditions in the earlier period, reduced biomass accumulation during

this time could be a function of tree physiological recovery from the ex-
tended drought conditions from 2001 to 2003 (Chasmer et al., 2008a;
Kljun et al., 2007). For example, it is known that for the boreal forest
species, Norway Spruce (Picea abies, L.), upper stem tree ring width
and height increment can take three to four years to recover following
an extended drought (Montwé, Spiecker, & Hamann, 2014).

When all chronosequence data are combined (Fig. 7), a Sigmoidal
growth relationship between total living biomass C and stand-age is ev-
ident. This characteristic growth function has been observed in numer-
ous studies where young stands tend to have less biomass than mature
stands, but higher NEP, depending on time since disturbance and recent
history (Bhatti, Apps, & Jiang, 2002; Jandl et al., 2007; Kurz & Apps,
1999). In mature stands, growth rates decline to the point of stabiliza-
tion, which occurs between approximately 80–200 years, depending
on species type and past disturbance (Pregitzer & Euskirchen, 2004;
Van Tuyl, Law, Turner, & Gitelman, 2005). At this development stage,
C inputs into the ecosystem approximate C losses, resulting in low
rates of C sequestration and minimal growth (Chapin et al., 2009).

4.3. Live carbon use efficiency (LCUE)

The fraction of GPP captured and stored in live biomass accumula-
tion was lowest within HJP02 and OJP (1% and 4%, respectively), and
greatest within the rapidly growing HJP94 (34%) (Table 3). Comparable
results were found in Peichl, Brodeur, Khomik, and Arain (2010) within
a temperate afforested white pine (Pinus strobus, L.) chronosequence.
From their estimate of ecosystem C use efficiency, which they defined
as CUE=NEP / GPP, they found thatmiddle-aged standsweremore ef-
ficient at sequestering C than the youngest and oldest stands. Data in
Table 3 and Peichl et al. (2010) suggest that in young pine stands
experiencing high mortality due to competition and self-thinning, and
in old stands where GPP is used for biomass maintenance, cumulative
annual woody biomass increases are small relative to seasonal biomass
production and replacement. However, while the observations are con-
sistent, it is important to note that LCUE and CUE are parallel concepts
but not equivalent. LCUE considers ecosystem C accumulation in living
biomass only, whereas CUE considers all ecosystem inputs and outputs
of organic C including soil exchanges.

4.4. Soil carbon storage

The levelling off of jack pine biomass accumulation in Fig. 7 occurs be-
yond ~60 years, broadly coinciding with the age at which the difference
betweenNEP andΔTLCALS reduces to zero (Fig. 9). This difference primar-
ily represents changes in C storage within the litter (ΔLC) and soil (ΔSC)
pools. From Fig. 9, the apparent trend in NEP − ΔTLC (or ΔLC + ΔSC) is
characteristic of the soil C dynamics curve (Covington, 1981), and be-
comes more positive with stand age. This suggests that within a certain
range of stand-age, the litter and soil storages transition fromanet source
to a net sink of ecosystem C. These observations shed new light on the C
balance properties within the jack pine chronosequence at BERMS but
are not unusual or unexpected results.

Table 4
Annual live biomass accumulation (ΔTLCALS) at FM plot-locations, stands andwithin footprints, (±95% CI frommean in brackets) comparedwithmean annual NEP using ECmethods and
biomass accumulation residual (NEP − ΔTLCALS).

Sites Stand age (years) Mean annual change in biomass (tC ha−1 yr−1) (95% CI) Mean NEP
(tC yr−1) (95% CI)

NEP − ΔTLCALS

(tC ha−1 yr−1)
Plot locations Stands Footprints

HJP94 11–17 1.65 (+0.27, −0.33) 2.25 (+0.82, −2.09) 1.54 (+0.45, −0.77) 0.88 (0.36)a −0.66
HJP75 30–36 0.84 (+0.18, −0.27) 1.05 (+0.23, −0.24) 0.90 (+0.18, −0.20) 0.63 (0.14)b −0.27
OJP 91–97 0.32 (+0.30, −0.31) 0.35 (+0.41, −0.35) 0.32 (+0.40, −0.32) 0.45 (0.13)c 0.13

a HJP94: NEP data collected from 2001 to 2004, 2009–2011; missing from 2005 to 2008. Gap filling from 2005 to 2008 based on linear regression between years with data (rb = 0.92).
b HJP75: NEP data collected from 2004 to 2007, 2010;missing in 2008–2009, 2011. NEP estimated based on linear regression from available data used to gap fill years withmissing data

(r2 = 0.70).
c OJP: NEP data are complete for all years of study. OJP NEP is least influenced by stand age (r2 = 0.04).

Fig. 9. Trends in average annual NEP and biomass accumulation for jack pine stands at
different levels of maturity. The two components estimated directly are NEP from EC
data and total live biomass accumulation (ΔTLCALS) modelled from plot-calibrated ALS
data. The residual difference is primarily a measure of the change in C storage in the soil
and litter zone. [Error bars = 95% CI].
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FollowingCovington (1981); Lal (2005) found that soil C content de-
clines sharply through the first ~20 years following harvest as a result of
lower above-ground biomass, decreasing litter inputs, and changes in
localized micro-climate. At HJP02, Howard et al. (2004) found that for-
estfloor C contentwas 2–3 times greater immediately after harvest than
the more mature jack pine stands, while Bhatti et al. (2002) and Kurz
et al. (2013) suggest that harvesting creates a large input of coarse
woody debris and accelerated decomposition due to reduced foliage
cover and soil warming. Further corroboration is found in several stud-
ies illustrating that below-ground necromass C allocations decrease
with increasing stand age (Law et al., 2001; Litton, Ryan, & Knight,
2004; Litton, Raich, & Ryan, 2007; Ryan, Binkley, Fownes, Giardina, &
Senock, 2004; Peichl & Arain, 2007).

4.5. Expansion factor limitations

The weakest link in the workflow presented is the expansion factor
analysis required to relate SLC to TLC. Based on the model in Fig. 5 and
the mean age of the stands during this study, SLC is expanded by
~20% (±30% at 95% CI) for OJP and ~55% (±15%) for HJP94. These
values were constructed from a small number (10) of independent or
aggregated CP plot data that likely did not sample the full range of nutri-
ent, age and growth characteristics across each stand. Consequently,
more spatially representative plots might increase the 95% CI illustrated
in Fig. 5 and propagated into Fig. 9. However, the outliers in Fig. 5 and
small sample number have already resulted in a large 95% CI, and this
is likely due to the CP plots being collected by different individuals
over an 11 year period and using slightly different sample configura-
tions. Theremay be some compensating effect of these two opposing in-
fluences but it is conceivable that the function in Fig. 5 possesses some
bias or the 95% CI generatedmay not be a true estimate of model uncer-
tainty. Nonetheless, compounding the uncertainty from Fig. 5 into the
NEP and biomass accumulation comparison in Fig. 9 would further re-
duce confidence in the illustrated proximity of NEP and biomass accu-
mulation components. This would impact the timing at which the soil
and litter store becomes a C sink but would not change the overall
trend of a transition fromC source to sink. Given biomass expansion fac-
tors and their associated uncertainty are critical in quantifying themag-
nitude and reliability of ΔTLC, it is recommended that the calculation
and use of expansion factors in ALS biometry receive serious attention
in any future use or refinement of the framework presented.

5. Conclusion

The study has presented a novel integration of diverse datasets, each
able to record key components of ecosystem C balance in a forest envi-
ronment. A boreal jack pine forest chronosequence was studied here
but the approach is valid for any regenerating forest ecosystem
where: i) EC data are available to provide cumulative estimates of CO2

flux, NEP and spatial footprint weightings of ecosystem flux source; ii)
plot data are available to calibrate remote sensing biomass products
and construct C pool expansion factors; and iii) temporal ALS (or
other high resolution 3Ddata such as derived from terrestrial laser scan-
ning (TLS) or unmanned airborne vehicle (UAV) platforms) to model
the spatio-temporal variation in, and accumulation of, total living bio-
mass C.

Integrating these C assessment techniques does not, at this time, re-
sult in ‘standard’ or widely used ecosystem C terms like Net Primary
Production (NPP) or Carbon Use Efficiency (CUE); which is typically
the ratio of NPP/GPP or sometimes NEP/GPP (e.g. Peichl et al., 2010).
However, by combining spatially explicit measurements of ecosystem
live biomass C accumulation with EC-based GPP and NEP, new
realisations of ecosystemCdynamics are assessed. In particular, through
live carbon use efficiency (LCUE), the connection between GPP and total
live biomass accumulation (or growth) becomes explicit. This increases
the synergy between the fields of atmospheric and ecosystem C

assessment, and national or commercial forest inventory monitoring,
as it provides a framework to integrate timber growth and yield, ALS-
based forest inventory and flux data to produce C metrics that are
meaningful to stakeholders from many backgrounds.

Assessing the necromass C balance in detritus and soil organic C is
typically invasive, can be highly spatially variable and cannot be easily
quantified using non-invasive techniques. However, the framework
presented improves our understanding of forest C dynamics, as in addi-
tion to directly observing above-ground biomass and NEP, it can
indirectly measure the combined litter and soil C trajectory. High reso-
lution remote sensing time series data and EC technologies are becom-
ing simpler to obtain and more cost-effective. Furthermore, new
satellitemissions, such as NASA's GEDI (Global EcosystemDynamics In-
vestigation) and ICESat (Ice Cloud Elevation Satellite) II or ESA's Bio-
mass, will soon be enhancing our capacity to monitor 3D biomass
change over large areas so novel methods that integrate in situ and or-
bital image-derived time-series data are needed. Consequently, there is
great potential to test and refine similar integrated C assessment
workflows in different ecosystem and data contexts. It is suggested
that, ecosystem C monitoring and assessment programs should be de-
signed explicitly to capitalise upon the differences and complementar-
ities in remote sensing, in situ and atmospheric flux observations that
have been highlighted and reconciled through this study.
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