10 research outputs found

    A Model for Integrating Generative AI into Course Content Development

    Full text link
    As Generative AI (GenAI) models continue to gain prominence, a new frontier is emerging in the field of computer science education. Results from initial anonymous surveys reveal that nearly half (48.5%) of our students now turn to GenAI for academic assignments, highlighting its growing role in modern education. With educators facing challenges in creating dynamic and unique course content, the potential of GenAI becomes evident. It offers not only a quicker method for content development but also paves the way for diversified, high-quality educational resources, countering traditional cheating methods and catering to varied student needs. Key questions thus arise: "How can GenAI assist instructors in creating meaningful content and problems quickly, and can it reduce the instructional staff's workload?" Addressing the first question, we unveil the "GenAI Content Generation Framework". This novel tool equips educators to tap into the prowess of GenAI for course content design. The framework presents a systematic and practical blueprint for generating university-level course material through chat-based GenAI. Drawing from our first-hand experiences, we provide strategic guidance on formulating inquiries and organizing GenAI sessions to elicit quality content that aligns with specific educational goals and context. Our work stands apart by outlining a specific workflow and offering concrete suggestions for harnessing GenAI in course material development, backed by a strong case for its adoption. Armed with the framework and insights presented in this paper, educators and course content developers can move forward with assurance, tapping into GenAI's vast potential for innovative content creation.Comment: 6 pages plus references. Updated to fix one arXiv reference numbe

    Quantum Voting and Violation of Gibbard-Satterthwaite's Impossibility Theorem

    Full text link
    In the realm of algorithmic economics, voting systems are evaluated and compared by examining the properties or axioms they satisfy. While this pursuit has yielded valuable insights, it has also led to seminal impossibility results such as Arrow's and Gibbard-Satterthwaite's Impossibility Theorems, which pose challenges in designing ideal voting systems. Enter the domain of quantum computing: recent advancements have introduced the concept of quantum voting systems, which have many potential applications including in security and blockchain. Building on recent works that bypass Arrow's Impossibility Theorem using quantum voting systems, our research extends Quantum Condorcet Voting (QCV) to counter the Gibbard-Satterthwaite Impossibility Theorem in a quantum setting. To show this, we introduce a quantum-specific notion of truthfulness, extend ideas like incentive compatibility and the purpose of onto to the quantum domain, and introduce new tools to map social welfare functions to social choice functions in this domain.Comment: 35 pages, 1 figure, 2 table

    Ab Initio Formation Energy Calculations for Defect Complexes in Diamond, ZnSe and CdS for Room-Temperature Quantum Computing

    No full text
    Quantum computers are beginning to demonstrate a potential for practical uses in data security, protein folding, artificial intelligence and machine learning, and economics. Current obstacles to reliable large-scale quantum computers include better decoherence times, improved error correction schemes, and consistent fabrication. Creating a qubit (quantum bit) that can exist at room temperature makes large progress in each of these obstacles while decreasing operational costs (by eliminating the need for cryogenic cooling). Diamond has shown promising results when a defect known as the Nitrogen Vacancy (NV) complex is introduced via doping into the crystal. However, diamond is expensive to fabricate and foundries that can do so are rare. ZnSe and CdS, by contrast, can be grown at lower temperatures and pressures than diamond, and do not require the expensive retooling of foundries for the higher pressure and temperature required in diamond fabrication. This study provides a methodology and computational structure with which to identify semiconductors with similar desirable electronic properties as the NV defect in diamond and identifies potential defects for the two specified semiconductors of interest. This work may guide experimental exploration of quantum technologies based on semiconductor defects and could lead to lower cost, room-temperature qubits that are easily fabricated using the vast infrastructure of the current semiconductor industry

    A Relative Church-Turing-Deutsch Thesis from Special Relativity and Undecidability

    Full text link
    Beginning with Turing's seminal work in 1950, artificial intelligence proposes that consciousness can be simulated by a Turing machine. This implies a potential theory of everything where the universe is a simulation on a computer, which begs the question of whether we can prove we exist in a simulation. In this work, we construct a relative model of computation where a computable \textit{local} machine is simulated by a \textit{global}, classical Turing machine. We show that the problem of the local machine computing \textbf{simulation properties} of its global simulator is undecidable in the same sense as the Halting problem. Then, we show that computing the time, space, or error accumulated by the global simulator are simulation properties and therefore are undecidable. These simulation properties give rise to special relativistic effects in the relative model which we use to construct a relative Church-Turing-Deutsch thesis where a global, classical Turing machine computes quantum mechanics for a local machine with the same constant-time local computational complexity as experienced in our universe.Comment: All feedback and comments will be greatly appreciate

    Enhanced Triboelectric Charge Stability by Air‐Stable Radicals

    No full text
    Abstract This paper demonstrates that air‐stable radicals enhance the stability of triboelectric charge on surfaces. While charge on surfaces is often undesirable (e.g., static discharge), improved charge retention can benefit specific applications such as air filtration. Here, it is shown that self‐assembled monolayers (SAMs) containing air‐stable radicals, 2,2,6,6‐tetramethylpiperidin‐1‐yl)oxidanyl (TEMPO), hold the charge longer than those without TEMPO. Charging and retention are monitored by Kelvin Probe Force Microscopy (KPFM) as a function of time. Without the radicals on the surface, charge retention increases with the water contact angle (hydrophobicity), consistent with the understanding that surface water molecules can accelerate charge dissipation. Yet, the most prolonged charge retention is observed in surfaces treated with TEMPO, which are more hydrophilic than untreated control surfaces. The charge retention decreases with reducing radical density by etching the TEMPO‐silane with tetrabutylammonium fluoride (TBAF) or scavenging the radicals with ascorbic acid. These results suggest a pathway toward increasing the lifetime of triboelectric charges, which may enhance air filtration, improve tribocharging for patterning charges on surfaces, or boost triboelectric energy harvesting

    Reporting of systematic reviews of micronutrients and health: a critical appraisal1234

    No full text
    Background: The quality of nutrition-related systematic reviews (SRs) is an unstudied but important factor affecting their usefulness
    corecore