112 research outputs found

    Search for magnetic monopoles with ten years of the ANTARES neutrino telescope

    Get PDF
    This work presents a new search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). Compared to previous ANTARES searches, this analysis uses a run-by-run simulation strategy, with a larger exposure as well as a new simulation of magnetic monopoles taking into account the Kasama, Yang and Goldhaber model for their interaction cross-section with matter. No signal compatible with the passage of relativistic magnetic monopoles is observed, and upper limits on the flux of magnetic monopoles with β=v/c≥0.55, are presented. For ultra-relativistic magnetic monopoles the flux limit is ∼7×10−18 cm−2s−1sr−1

    ANTARES search for point-sources of neutrinos using astrophysical catalogs: a likelihood stacking analysis

    Full text link
    A search for astrophysical point-like neutrino sources using the data collected by the ANTARES detector between January 29, 2007 and December 31, 2017 is presented. A likelihood stacking method is used to assess the significance of an excess of muon neutrinos inducing track-like events in correlation with the location of a list of possible sources. Different sets of objects are tested in the analysis: a) a sub-sample of the \textit{Fermi} 3LAC catalog of blazars, b) a jet-obscured AGN population, c) a sample of soft gamma-ray selected radio galaxies, d) a star-forming galaxy catalog , and e) a public sample of 56 very-high-energy track events from the IceCube experiment. None of the tested sources shows a significant association with the sample of neutrinos detected by ANTARES. The smallest p-value is obtained for the radio galaxies catalog with an equal weights hypothesis, with a pre-trial p-value equivalent to a 2.8σ2.8 \, \sigma excess, equivalent to 1.6σ1.6 \, \sigma post-trial. In addition, the results of a dedicated analysis for the blazar MG3 J225517+2409 are also reported: this source is found to be the most significant within the \textit{Fermi} 3LAC sample, with 5 ANTARES events located at less than one degree from the source. This blazar showed evidence of flaring activity in \textit{Fermi} data, in space-time coincidence with a high-energy track detected by IceCube. An \emph{a posteriori} significance of 2.0σ2.0\, \sigma for the combination of ANTARES and IceCube data is reported

    Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data

    Full text link
    In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network (AMON) has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between July 2015 and February 2020 with a livetime of 4.39 years. Over this time period, 3 coincident events with an estimated false-alarm rate of <1< 1 coincidence per year were found. This number is consistent with background expectations.Comment: 12 pages, 5 figures, 3 table

    KM3NeT broadcast optical data transport system

    Get PDF
    The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed

    Multimessenger NuEM Alerts with AMON

    Get PDF
    The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make-up this channel and present a selection of recent results

    Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube

    Get PDF
    [EN] We present the results of the first combined dark matter search targeting the Galactic Center using the ANTARES and IceCube neutrino telescopes. For dark matter particles with masses from 50 to 1000 GeV, the sensitivities on the self-annihilation cross section set by ANTARES and IceCube are comparable, making this mass range particularly interesting for a joint analysis. Dark matter self-annihilation through the ¿+¿¿, ¿+¿¿, b¯b, and W+W¿ channels is considered for both the Navarro-Frenk-White and Burkert halo profiles. In the combination of 2101.6 days of ANTARES data and 1007 days of IceCube data, no excess over the expected background is observed. Limits on the thermally averaged dark matter annihilation cross section h¿A¿i are set. These limits present an improvement of up to a factor of 2 in the studied dark matter mass range with respect to the individual limits published by both collaborations. When considering dark matter particles with a mass of 200 GeV annihilating through the ¿þ¿¿ channel, the value obtained for the limit is 7.44 × 10¿24 cm3 s¿1 for the Navarro-Frenk-White halo profile. For the purpose of this joint analysis, the model parameters and the likelihood are unified, providing a benchmark for forthcoming dark matter searches performed by neutrino telescopes.The authors from the ANTARES Collaboration acknowledge the financial support of the following funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et auxenergies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and CC-IN2P3 for the computing facilities. The authors from the IceCube Collaboration gratefully acknowledge the support from the following agencies and institutions: USA-U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium-Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany-Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Germany-Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden-Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia-Australian Research Council; Canada-Natural Sciences and Engineering Research Council of Canada, Calcul Quebec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark-Villum Fonden, Danish National Research Foundation (DNRF), Carlsberg Foundation; New Zealand-Marsden Fund; Japan-Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea-National Research Foundation of Korea (NRF); Switzerland-Swiss National Science Foundation (SNSF); United Kingdom-Department of Physics, University of Oxford. The IceCube collaboration acknowledges the significant contributions to this manuscript from Sebastian Baur, Nadege Iovine and Sara Rebecca Gozzini.Albert, A.; Andre, M.; Anghinolfi, M.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.; Baret, B.... (2020). Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Physical Review D: covering particles, fields, gravitation, and cosmology. 102(8):1-13. https://doi.org/10.1103/PhysRevD.102.082002S113102

    Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays

    Get PDF
    For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above ∼50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs

    Liquid biopsies come of age: towards implementation of circulating tumour DNA

    Get PDF
    Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a ‘liquid biopsy’ for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.We would like to acknowledge the support of The University of Cambridge, Cancer Research UK (grant numbers A11906, A20240, A15601) (to N.R., J.D.B.), the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 337905 (to N.R.), the Cambridge Experimental Cancer Medicine Centre, and Hutchison Whampoa Limited (to N.R.), AstraZeneca (to R.B., S.P.), the Cambridge Experimental Cancer Medicine Centre (ECMC) (to R.B., S.P.), and NIHR Biomedical Research Centre (BRC) (to R.B., S.P.). J.G.C. acknowledges clinical fellowship support from SEOM

    Abundance and diversity of anammox bacteria in a mainstream municipal wastewater treatment plant

    Full text link
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Among the factors that obstruct the application of anammox-based technology for nitrogen removal from mainstream municipal wastewater is the water’s high organic loads. We hypothesized that some anammox species can adapt and grow in mainstream wastewater in which a minimal temperature of 13–15 °C is maintained. Using the AMX368F and AMX820R PCR-primers, anammox bacteria were detected in influent wastewater (COD/N ratio > 13) and in the anaerobic, anoxic, and aerobic chambers of a full-scale municipal wastewater treatment plant, reaching 107 copies/g VSS of the16S rRNA gene. Furthermore, anammox activity was demonstrated by 15N-isotopic tracing. The DNA sequences of clones randomly selected from a clone library were mainly clustered with Candidatus Brocadia flugida in addition to Ca. Brocadia sinica, Ca. Jettenia asiatica, and Ca. Anammoxoglobus propionicus. However, Ca. Brocadia was the only genus detected by high-throughput next-generation sequencing and denaturing gradient gel electrophoresis. The nitrite producers, ammonia-oxidizing archaea and bacteria, were both detected in the influent wastewater and the other chambers, while the nitrite consumers, Nitrospira nitrite oxidizers and the nirS-type denitrifiers, dominated all chambers. The results indicate the occurrence and potential activity of anammox bacteria in mainstream wastewater under certain conditions (proper temperature). The dominance of Brocadia flugida and Anammoxoglobus propionicus suggests a role for volatile fatty acids in selecting the anammox community in wastewater
    corecore