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Key points 

• cfDNA is released predominantly by cell death into the bloodstream, though 

active secretion may play a role. Since the discovery of fetal cfDNA in the 

maternal circulation, cfDNA analysis has been rapidly implemented in clinical 

practice for non-invasive prenatal testing. 

• Mutations were first detected in cfDNA over two decades ago, and interest in 

ctDNA as a non-invasive cancer diagnostic has increased dramatically with 

the development of molecular methods that permit the sensitive detection and 

monitoring of multiple classes of mutation.  

• ctDNA may have utility at almost every stage of cancer patient management, 

including: diagnosis, minimally invasive molecular profiling, treatment 

monitoring, detection of residual disease, and identification of resistance 

mutations. ctDNA analysis may be broadly considered as a tool for both 

quantitative analysis of disease burden and for genomic analysis. 

• The identification of ctDNA in individuals prior to a cancer diagnosis, and in 

pre-symptomatic individuals, suggests the possibility of ctDNA analysis as a 
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tool for earlier diagnosis or screening. Non-invasive cancer classification or 

sub-typing has also emerged as a possibility, though for early detection, both 

technical and biological factors introduce challenges to the detection of 

mutant DNA in plasma and its interpretation. 

• Monitoring multiple mutations in parallel can enhance sensitivity for ctDNA 

detection, can be used to assess clonal evolution of patients’ disease, and 

may identify resistance mutations before clinical progression is observed.  

• ctDNA analysis is beginning to transition from the research setting into the 

clinic. The US Food and Drug Administration and the European Medicines 

Agency have approved ctDNA tests for specific indications in the absence of 

evaluable tumour tissue. Analysis of gene panels in plasma has now become 

available as a potential clinical tool. Larger studies are underway to establish 

the overall performance and clinical utility of such assays when a tumour 

biopsy is not available for analysis. 

• Potential applications of ctDNA have been demonstrated by a number of 

proof-of-principle studies. Prospective clinical trials are beginning to assess 

the clinical utility of ctDNA analysis for molecular profiling and disease 

monitoring. Increasing acceptance of ctDNA is enabling the field to move from 

exploratory ctDNA studies towards clinical trials where ctDNA is guiding 

decision making. 

• In order to fully exploit the potential utility of liquid biopsies, it is essential that 

the biology of cfDNA and ctDNA is explored further. Mechanisms of release 

and degradation, and the factors that affect the representation of ctDNA in 

plasma, are poorly understood. The nature of ctDNA will be clarified through 

both large, well-annotated clinical studies, and through in vivo studies, where 

variables may be controlled. 
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Preface  

Improvements in genomic and molecular methods are expanding the range of 

potential applications for circulating tumour DNA (ctDNA), both in a research setting 

and as a ‘liquid biopsy’ for cancer management. Proof-of-principle studies have 

demonstrated the translational potential of ctDNA for prognostication, molecular 

profiling, and monitoring. The field is now at an exciting transitional period where 

ctDNA analysis is beginning to be applied clinically, although there is still much to 

learn about the biology of cell-free DNA. This is an opportune time to appraise 

potential approaches for ctDNA analysis, and to consider their applications in 

personalised oncology and in cancer research.  

 

The presence of fragments of cell-free nucleic acids in human blood was first 

described in 1948 by Mandel and Métais1. The origins and characteristics of cell-free 

DNA (cfDNA) were studied intermittently in subsequent decades2. In healthy 

individuals, cfDNA concentration tends to range between 1-10ng/millilitre (ml) in 

plasma3,4. Raised cfDNA levels were first reported in the serum of cancer patients in 

19775; cfDNA concentration can also be raised by other physiological conditions or 

clinical scenarios, such as acute trauma6, cerebral infarction7, exercise8, 

transplantation9, and infection10. Furthermore, the identification of fetal DNA 

sequences in maternal plasma by Dennis Lo and colleagues in 199711 has led to 

multiple applications of cfDNA in prenatal medicine including sex determination12, 

identification of monogenic disorders13, and non-invasive prenatal testing (NIPT) for 

aneuploidies such as Down’s Syndrome (trisomy 21). NIPT was first demonstrated in 

2007 by Lo et al.14 and has moved rapidly into widespread clinical use15,16. 

 

In 1989, Stroun, Anker et al. identified that at least some cfDNA in the plasma of 

cancer patients originates from cancer cells2,17. In 1991, Vogelstein, Sidransky and 

colleagues showed that DNA from urinary sediments (cell pellets) from patients with 

invasive bladder cancer carried mutations in TP53, setting the stage for the use of 

genomic analysis methods in liquid biopsy applications18. KRAS mutations were soon 

found in stool or sputum that matched mutations from colorectal19, pancreatic20 or 

lung21,22 cancers. In 1994, mutated KRAS sequences were first reported to be 
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detected in plasma cfDNA of patients with pancreatic cancer using polymerase chain 

reaction (PCR) with allele-specific primers23. For each patient, the KRAS mutation 

found in the plasma was identical to that found in the patient’s tumour, thereby 

confirming that the mutant DNA fragments in plasma were of tumour origin. 

Mutations in cfDNA are highly specific markers for cancer, which gave rise to the 

term circulating tumour DNA (ctDNA). 

 

In the following decades, ctDNA was explored as a prognostic or predictive 

marker24,25 and for cancer detection26. Such studies confirmed the potential of ctDNA, 

though the levels of ctDNA in different clinical contexts were not yet accurately 

defined. These studies nonetheless could demonstrate potential clinical applications, 

for example detection of KRAS mutations in plasma as a potential prognostic factor 

in colorectal cancer27. The introduction of a digital PCR (dPCR) method in 1999 by 

Vogelstein and Kinzler enabled the accurate identification and absolute quantification 

of rare mutant fragments28. A modification of this technique using beads in 

emulsions29 and flow cytometry allowed the quantification of the mutant allele fraction 

of cancer mutations in the plasma of patients with different stages of colorectal 

cancer30. Diehl, Diaz et al. then showed in 2008 that ctDNA is a highly specific 

marker of tumour dynamics, and may be able to indicate residual disease31. In 

parallel, allele-specific PCR and other methods were devised and tested for their 

ability to identify epidermal growth factor receptor (EGFR) mutations in serum or 

plasma of lung cancer patients32, following the elucidation of the role of such 

mutations in predicting response to treatment with molecularly targeted 

inhibitors25,33,34. 

 

The development of next generation sequencing-based technologies has facilitated 

the interrogation of the genome at a broader scale. In 2012, deep sequencing of 

multiple genes in cfDNA was demonstrated using panels of tagged amplicons, which 

allowed the identification of mutations directly in the plasma of cancer patients, and 

monitoring of multiple tumour-specific mutations in a single assay35. This method was 

subsequently applied to monitor ctDNA in a cohort of patients with metastatic breast 

cancer36. Shortly thereafter, whole-genome sequencing (WGS) of plasma cfDNA was 
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first shown to identify tumour-derived chromosomal aberrations37, focal 

amplifications38 and gene rearrangements39, and hybrid-capture sequencing was 

introduced as a non-invasive method to analyse the evolving genomic profile of 

mutations in cancer across the entire exome40.  

 

There is a clear clinical need for novel diagnostic and molecular tools in oncology 

(Box 1). Conventional sampling methods such as needle biopsies are subject to 

procedural complications in up to one in six biopsies41, difficulty in obtaining sufficient 

material of adequate quality for genomic profiling (reported failure rates range from 

<10% to >30% of cases)42,43, and sampling biases arising from genetic 

heterogeneity44–48. Detection and monitoring of disease often relies on body fluid-

based markers that often lack specificity49, and imaging which exposes patients to 

ionising radiation50 and has limited resolution (in both time and space). Recent 

advances in ctDNA research highlight the potential applications of liquid biopsies at 

each stage of patient management (Fig. 1a). These potential applications primarily 

arise from two types of information obtainable through ctDNA analysis: quantification 

of disease burden, and genomic analysis of cancer (Fig. 1b). These may be 

combined and/or leveraged through serial sampling in order to monitor disease 

burden and clonal evolution. 

 

The increasing availability and reliability of techniques for PCR and high-throughput 

sequencing are facilitating novel high-sensitivity applications, the generation of large 

clinical datasets, and a better understanding of the origin of both cfDNA and ctDNA. 

This Review will highlight and explore recent advances in the field and the 

implications for oncology. 

 

cfDNA and ctDNA biology  

Characteristics of cfDNA and ctDNA  

cfDNA is thought to be released from cells mostly through apoptosis and necrosis, 

and possibly also active secretion2,51–54. Outside of the blood circulation, cfDNA has 

been detected a variety of body fluids including urine55–58,59, cerebrospinal fluid 

(CSF)60–63, pleural fluid64 and saliva65. Genetic and epigenetic modifications of cfDNA 
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molecules reflect the genome or epigenome of the cell of origin66–68 (Fig. 2). 

Methylation analysis has revealed that the majority of cfDNA in plasma is released 

from haematopoietic cells in healthy individuals67–69. These have been suggested to 

be the source of cfDNA release following intense exercise70. Observational studies 

have determined the half-life of cfDNA in the circulation as between 16 minutes and 

2.5 hours31,71–73, which allows ctDNA analysis to be considered as a ‘real-time’ 

snapshot of disease burden. Other observational studies indicate that cfDNA is 

cleared from the circulation via nuclease action72,74 and renal excretion into the 

urine55,58,75. cfDNA uptake in the liver and spleen, followed by degradation by 

macrophages, may also contribute30,76. The stability of individual fragments in the 

circulation may be increased through association with cell membranes, extracellular 

vesicles or proteins2.  

 

Nearly two decades ago, the modal size of cfDNA was determined using gel 

electrophoresis as ~180 base pairs (bp), indicating that cfDNA was likely to be 

nucleosome-associated77. Sequencing-based approaches have since refined this 

measurement, by identifying a prominent peak at 166bp78,79, corresponding to the 

length of DNA wrapped around a nucleosome (~147bp), plus linker DNA associated 

with histone H1. Fragment size traces of cfDNA show a 10bp ladder pattern54,75, 

ostensibly caused by nucleases cleaving the DNA strand at periodically exposed 

sites with each turn of the DNA double-helix. The fragmentation patterns of cfDNA 

differ between plasma and urine75, potentially contributed to by a higher nuclease 

activity in urine80.  

 

ctDNA  molecules are shorter than non-mutant cfDNA in plasma, demonstrated by 

PCR4,81 and sequencing68,82. Animal xenograft experiments79,81–83 provide an elegant 

means to interrogate ctDNA, since any human DNA sequences must have originated 

from the tumour xenograft. The modal length of ctDNA fragments has been 

measured in a rat xenograft model as between 134-144bp82, though the cause of this 

shortening is not clear. Shortening of fragments is also observed in fetal cfDNA 

relative to maternal cfDNA78, and between non-haematopoetically-derived vs. 

haematopoietically-derived cfDNA fragments in transplant patients84,85. Differences in 
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nucleosome wrapping or nuclease action between haematopoietic cells, which 

contribute most to the cfDNA pool, and other tissues may play a role. Long cfDNA 

fragments (>1000bp) have been observed in healthy individuals using long-read 

sequencing techniques86, and may be released into the circulation in association with 

exosomes51,52, or by tumour cells via necrosis53. Current extraction methods often 

poorly recover these long fragments87,88 (Box 2). Commonly used library preparation 

methods introduce further biases: single-stranded DNA (ssDNA) library preparation89 

can recover DNA fragments with damaged ends, and when applied to cfDNA66,90 

uncovered a large proportion of fragments shorter than 100 bases. Diverse extraction 

and sequencing methods may therefore yield complementary data. Combining those 

with histological analysis of corresponding tissue samples could provide new insights 

into the biological determinants of cfDNA fragmentation, and the biological origins of 

cfDNA. 

 

Physiological and pathological considerations 

cfDNA has been proposed as a ligand for Toll-like receptor 9 (TLR9)91,92, a sensor of 

exogenous DNA fragments, found primarily in tissues rich in immune cells. In mice, 

obesity-related adipocyte degeneration was shown to release cfDNA, which 

contributed to macrophage accumulation via TLR9 activation, leading to adipose 

tissue inflammation and insulin resistance92. Another study has suggested that 

cfDNA may inhibit pro-apoptotic caspases via TLR9-depedent signalling91, which 

could imply a potential immunomodulatory role for cfDNA.  

 

In vitro experiments suggest that cfDNA may be internalised by cells2,93,94, raising the 

possibility that cfDNA molecules could mediate the horizontal transfer of genes or 

DNA. One report showed in vitro transformation of NIH-3T3 mouse cells that were in 

contact with samples of plasma from patients with KRAS-mutant colorectal cancers, 

despite being separated to avoid tumour cell contamination95. Another study 

demonstrated integration of ctDNA into the nuclear DNA of recipient cells, and 

suggested that this may occur through non-homologous end-joining93. A similar 

phenomenon has been observed with mitochondrial DNA96. Overall, it is clear that 



8 

there is a lot to learn about the biology of cfDNA and ctDNA, which could have an 

important impact on their potential applications in oncology. 

 

Approaches for ctDNA analysis 

Analysis of ctDNA ranges in scale from single mutations to whole-genome analyses 

(Fig. 3; See Table 1 for a comparison of selected techniques). Appropriately 

designed assays for individual mutations can achieve high sensitivity using a simple 

workflow. Allele-specific PCR methods97,98 have been applied since the mid-2000s 

for detection of hot-spot mutations in serum and plasma25,33,34,99, and some assays 

are available as kits that are approved for clinical use158,160, but have limited 

analytical sensitivity. dPCR assays on microfluidic platforms are quantitative and 

highly sensitive, and are used extensively for quantifying ctDNA levels29,30,32,57,100–102. 

Improved detection at selected loci has been demonstrated by methods such as 

single-base extension103 or enrichment for mutant alleles by electrophoretic 

methods131,132, nuclease activity104 or modified PCR105–107. The multiplexing capacity 

of such assays, that rely on differential binding affinities of mutant and wild type 

alleles, and for the most part require primers or probes that are specific to a defined 

mutation or targeted locus, is limited. These are, therefore, generally suited to 

investigating a small number of mutations, and are often applied to analysis of cancer 

hot-spot mutations. If samples need to be split into multiple reactions, this increases 

sampling error, and may impair the overall performance of an assay for very low copy 

numbers of mutant DNA. 

 

In order to interrogate a larger number of loci, targeted sequencing using PCR 

amplicons or hybrid-capture have been employed35,40,108,109. Regions for sequencing 

may range from individual exons of interest (kilobases), to the entire exome (~50 

megabases). Current off-the-shelf panels for gene sequencing can detect mutations 

with an allele fraction greater than 1%46,110. By reducing background error rates of 

sequencing, for example by molecular barcoding (Fig. 3) or multiple replicates (Fig. 

4), ctDNA can be detected at allele fractions below 0.1%111–114 (Table 1). Amplicon-

based assays that have been optimised for the purpose of ctDNA analysis can target 
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dozens to hundreds of amplicons across multiple kilobases35,112,114. Hybrid-capture-

based approaches can increase the genomic region studied to dozens or hundreds 

of kilobases108,109,111,115. The sensitivity for ctDNA detection can be further enhanced, 

even with limited amounts of input material, by using multiplexed patient-specific 

panels in combination with targeted sequencing methods35,111 (Fig. 4).  

 

Amplifications and deletions may be identified through low-depth (~0.1x coverage) 

sequencing of the whole genome, with comparison of the relative number of 

sequencing reads between equally sized genomic regions across a sample or 

between samples and controls39. Such shallow WGS (sWGS) has been employed to 

detect fetal aneuploidies38, and it can also be used to detect cancer-specific copy 

number alterations37,39,116. sWGS has a limit of detection of between 5%-10% mutant 

allele fraction (Table 1), and so has limited sensitivity for profiling earlier stage 

disease. If molecular profiling of a small number of recurrent copy number alterations 

is desired, higher sensitivity may be achieved through targeted sequencing of single 

nucleotide polymorphisms, which may detect copy number alterations as low as 

0.5%117.  

 

The limit of detection for assays will vary based on whether the individual’s disease 

status, and tumour mutations, are already characterised. Tumour burden in plasma 

has often been assessed by quantifying mutations (or other alterations) that were 

previously identified in the patient’s tumour sample30,31. For mutation calling across a 

panel of genes or hotspots, the risk of false positives increases with the size of the 

panel due to multiple hypothesis testing, and filters need to be applied to increase 

specificity, which erodes sensitivity for rare variants. Prior knowledge of the mutation 

profile (e.g. from tumour sequencing data) enables the detection of known patient-

specific mutations above the background error rate, as opposed to calling mutations 

de novo35. Thus, sequencing-based assays can be used as sensitive and quantitative 

tools for ctDNA measurement and monitoring, in addition to their use for mutation 

profiling35,36,108 (Fig. 1b). 
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ctDNA can be quantified using different metrics, such as mutant allele concentration 

(i.e. copies per ml) or mutant allele fraction118. Each of these metrics would be 

affected in a different way by analytical, pre-analytical, and physiological 

characteristics. For example, metabolic changes to the rate of cfDNA turnover would 

affect the concentration of mutant alleles more than the mutant allele fraction, 

whereas pre-analytical factors affecting release of germline DNA from blood cells 

would reduce the mutant allele fraction to a greater extent. Analysis of ctDNA (both 

fraction and concentration)118, as well as total cfDNA and cfDNA fragmentation3,119, 

could therefore provide complementary information, and may have advantages in 

different applications or in combination.  

 

ctDNA detection across cancer stages 

ctDNA relates to stage and prognosis  

The concentration of ctDNA in plasma has been shown to correlate with tumour 

size79,120 and stage121. A study of 640 patients with various cancer types and 

stages121 found a 100-fold increase in median ctDNA concentration between patients 

with Stage I and Stage IV disease. Measuring individual tumour mutations in each 

patient, patients with Stage I disease had fewer than 10 copies per 5 ml of plasma. In 

sharp contrast, patients with advanced prostate, ovarian and colorectal cancers had 

a median concentration of 100-1,000 copies per 5 ml of plasma. ctDNA levels vary 

greatly even within patients with the same type and stage of disease. This variability 

in ctDNA concentration is partially explained by differences in extent of metastatic 

spread or disease burden. In a recent report that compared ctDNA levels with tumour 

volume assessed by imaging in patients with relapsed high-grade serous ovarian 

cancer, ctDNA levels and disease volume were significantly correlated118. Mutant 

alleles in plasma increased in fraction by approximately 0.08%, and in concentration 

by 6 mutant copies per millilitre of plasma, for every cm3 of disease118. 

Notwithstanding these correlations, substantial variation in ctDNA concentration may 

arise from inter-individual differences. For example, poor tumour vascularisation 

could hamper ctDNA release into the bloodstream, or conversely, could promote 

ctDNA release via producing hypoxia and cell death. Histological differences could 

forseeably influence both the rate and type of cell death. Patients with primary brain 
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tumours have very low levels of ctDNA, with a median concentration for individual 

mutations of less than 10 copies per 5 ml of plasma121, while the fraction of tumour 

DNA in CSF was found to be significantly higher61,62,121. Although not directly proven, 

the blood-brain barrier has been suggested to impede the movement of cfDNA 

fragments into the circulation61,62,121. 

 

The relationship between ctDNA levels and cancer stage suggests prognostic utility 

for ctDNA. Patients with detectable ctDNA have been shown to have worse survival 

outcomes than those without27,122–126. In one of the earliest examples in the field, the 

2-year overall survival rate for patients with colorectal cancer who had detectable 

ctDNA was 48%, as opposed to 100% for patients without27. In patients with 

detectable ctDNA, it has been found to be a more significant prognostic predictor 

than commonly used tumour markers36,118, where an increasing concentration of 

ctDNA correlates with poorer clinical and radiological outcomes36,118,121,127,128. For 

example, in patients with metastatic breast cancer, a significant inverse correlation 

was shown between ctDNA concentration and overall survival up to 2000 copies/ml, 

with a uniformly poor prognosis above this level36. In addition to ctDNA levels, 

mutational patterns identified in ctDNA (Fig. 1b) can help group patients into 

molecular subtypes with different prognosis129. 

 

Earlier diagnosis of disease 

Diagnosing cancer at an earlier stage, particularly before metastatic spread, may 

allow earlier intervention and could improve survival130. A number of studies have 

demonstrated the potential for non-invasive early diagnosis. Mutations have been 

detected in saliva and plasma from individuals up to two years prior to cancer 

diagnosis21,131, and there have been reports of incidental pre-symptomatic detection 

of cancers in pregnant women who underwent NIPT68,132,133, as WGS can identify 

copy number alterations of both fetal and tumour origin. Screening in asymptomatic 

populations introduces risks of over-diagnosis and false positives; implementation 

could therefore be explored in stages, and a first step could involve the use of ctDNA 

for earlier diagnosis of disease in symptomatic individuals, who at present may 

undergo lengthy investigation procedures. 
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In a survey across several cancer types, ctDNA was detected in 82% of patients with 

Stage IV disease, which fell to 47% for patients with Stage I disease121. The method 

they applied was benchmarked as being able to detect one copy of an individual 

cancer mutation per 5ml of plasma121. Using a sequencing gene panel that targeted a 

median of four mutations per patient, ctDNA was detected in 50% of patients with 

stage I non-small cell lung cancer (NSCLC)108. Targeting known tumour mutations in 

plasma using ddPCR assays in early-stage breast cancer showed a sensitivity of 

93.3%134. A sWGS method adapted from an NIPT assay was recently shown to 

detect 6/16 (37.5%) cases of early ovarian cancer135, though this approach may not 

perform as well in other cancer types with fewer copy number alterations. Together, 

these studies outline the possibility, and the challenge, of detection of ctDNA in early 

stage disease. 

 

If analysis is performed on a few millilitres of plasma containing only a few thousand 

copies of the genome, increasing the analytical sensitivity beyond the range of 

~1/1000 may not produce any sensitivity benefit since at low allele fractions, it 

becomes increasingly likely that the mutation of interest may not be found due to 

sampling noise. One approach may be to collect greater volumes of plasma (and 

more cfDNA) through methods such as plasmapheresis or implanted devices 

containing materials that bind cfDNA; similar approaches have been tested for 

enhancing the yield of circulating tumour cells (CTCs)136. Given these challenges, it is 

important that pre-analytical factors surrounding the collection, processing, and 

extraction of cfDNA are optimised (Box 2). Alternatively, for some cancer types, other 

minimally invasive samples may have a higher tumour DNA content, such as urine 

for bladder cancer57 or stool for colorectal cancers19; or cytological specimens such 

as cervical smears137, uterine lavage138, or oesophageal brushings139 for 

gynaecological or oesophageal cancers, respectively (Fig. 3c). For cancers with a 

viral aetiology, e.g. nasopharyngeal carcinoma or cervical cancer, detection of the 

cancer-associated viral DNA that may be present in body fluids in many more copies 

than tumour DNA can enhance the identification of individuals with early stage 

disease or pre-malignant lesions with a high risk for cancer140,141. 
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Technical and biological advances facilitate enhanced mutation detection: the finding 

that ctDNA is shorter than cfDNA4,81,82 suggests the utility of experimental or in silico 

size selection (Fig. 3d). Where the input amount of plasma or DNA is limiting, assays 

that interrogate multiple mutations in the same reaction (through broad genomic 

coverage or by patient-specific multiplexed panels) may produce a higher overall 

sensitivity for detecting the presence of any ctDNA35,36,108,110,111, compared to focused 

analysis of individual loci (Fig. 4). Taken to a (currently impractical) extreme, ultra-

deep sequencing of the entire genome could in the future allow sensitive detection of 

cancer even from small volumes of plasma37 (or other fluids). 

 

Although technical advances may improve sensitivity for ctDNA analysis further, 

biological and genomic factors may eventually become limiting. For confident de 

novo cancer detection using ctDNA, detected alterations should have a high positive 

predictive value for cancer. However, mutations known to be associated with cancer 

(e.g. in TP53, KRAS, and Notch pathway genes) have been found at low levels in 

skin biopsies of healthy individuals142. If non-tumourigenic clones were to increase to 

sufficient size and release mutated cfDNA, they could introduce biological noise. 

Clonal haematopoiesis with leukaemia-associated mutations has been observed in 

10% of individuals older than 65 years of age, though the absolute risk of conversion 

to haematologic cancer is 1%143. Genomic alterations known to be associated with 

cancer have been found in plasma from healthy individuals111,115,144,145. Clinical 

outcomes for apparently healthy individuals in whom mutant DNA is detected in 

plasma should be characterised in order to understand the biological and clinical 

implications of such findings. 

 

Cancer localisation 

Tissue-of-origin information from liquid biopsies might be able to aid cancer 

localisation, for example, for cancers of unknown primary146. Methylation and 

nucleosome occupancy patterns in cfDNA have been found to encode tissue- and 

cell-specific information66–68,147: in one case, a pregnant woman had chromosomal 

abnormalities detectable by NIPT, and so tissue-specific methylation signals in 
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plasma were studied, enabling quantification of the relative contributions of each 

tissue to the total cfDNA pool68. This revealed an increased contribution of cfDNA 

from B-lymphocytes, consistent with a diagnosis of follicular lymphoma68. While it 

may be possible in the future to deduce the tissue type of origin of a cancer in this 

fashion, it remains to be seen whether the site or sites of metastatic spread can be 

determined through a measurable increase in tissue-specific cfDNA signal.  

 

Non-invasive molecular profiling  

Analysis of heterogeneity 

The extent of genetic heterogeneity has been confirmed over recent years as multi-

regional sequencing studies have demonstrated clear differences in mutation profiles 

between different tumour regions in the same patient148,149 and between different 

specimens from primary and metastatic sites150. Although the potentially confounding 

effects of heterogeneity are recognised, it is often neither feasible nor desirable to 

perform multiple tumour biopsies on patients to try to account for this. Analysis of an 

individual biopsy might not accurately reflect the genomic architecture of a patient’s 

cancer, introducing bias to the selection and efficacy of personalised medicines. 

Furthermore, in a recent study of patients with lung cancer treated with an EGFR 

inhibitor, the tumour EGFRT790M allele fraction correlated with the degree of tumour 

shrinkage151, suggesting that the current paradigm of treatment selection based on 

mutation presence or absence alone may be suboptimal.  

 

Liquid biopsies sample ctDNA released from multiple tumour regions, and may 

thereby reflect both intratumour heterogeneity45,47,62 and spatially separated disease 

foci48,152–154. While individual tumour biopsies from different tumour regions may differ 

in mutation profile due to intratumour heterogeneity155,156, ctDNA analysis has 

detected mutations missed in corresponding tissue samples45,48,157,158. Multi-region 

tumour sequencing data show that stem mutations (shared by all tumour regions) 

show a higher allele fraction in plasma compared to private mutations47,48. Therefore, 

for tracking tumour burden in plasma, stem mutations would provide the most reliable 

detection. Alternatively, tracking a large set of mutations may compensate for 

potential biases of individual private mutations. 
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Hotspot mutations and gene panels 

By comparing mutation detection in plasma against matched tumour samples, the 

sensitivity of ctDNA analysis has been estimated in retrospective studies as between 

65%-98%100,102,119,154,157,159–161. For profiling specific loci, for example in order to 

stratify patients for matched molecular therapies, international studies have begun to 

demonstrate that large-scale testing is feasible and may be standardised, although 

the use of assays with limited analytical sensitivity resulted in low detection rates of 

ctDNA162–164. Using assays developed specifically to detect low levels of ctDNA3, a 

blinded prospective study demonstrated sensitivity for KRAS and BRAF mutations in 

metastatic colorectal cancer of 92% and 100%, respectively, with concordance rates 

of 96% and 100% for each119. 

 

Considerable attention has been devoted to analysis of EGFR mutations in patients 

with NSCLC34,99, as it is often challenging to obtain tissue biopsies to help inform 

treatment41,42. Meta-analysis of 27 selected studies published between 2007-2015, 

comprising altogether nearly 4000 patients, resulted in a pooled sensitivity of 60% 

and specificity of 94% for detection of EGFR mutations in plasma or serum, with a 

variety of methods34. In a phase IV study of the EGFR inhibitor gefitinib, mutation 

status was compared between tumour and plasma samples from 652 patients. The 

sensitivity and specificity for detecting mutations in plasma were determined as 

65.7% and 99.8%, respectively164,165, likely affected by the limited analytical 

sensitivity of the PCR-based method used166, as the version of the kit used in that 

study had a limit of detection (at ≥95% analytical sensitivity) of 1.64% and 1.26% for 

EGFR deletions and L858R mutations, respectively164. Low rates of concordance of 

EGFRT790M status were also observed in a recent phase III trial of osimertinib167, in 

which tissue testing was compared to plasma using an allele-specific PCR assay for 

ctDNA analysis that has a limit of detection (with ≥95% analytical sensitivity) of 100 

copies of EGFRT790M per ml of plasma168. Using methods with greater analytical 

sensitivity, higher concordance rates were obtained157,169. The EGFRT790M mutation 

confers resistance to gefitinib and erlotinib, and frequently emerges following initial 

treatment with those EGFR tyrosine kinase inhibitors33,170,171. In plasma, the 
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sensitivity for detecting this mutation was lower than for EGFRL858R and EGFREx19del 

(70% vs. ≥90%), which occur earlier in the development of disease157,169. Initial data 

suggests that this may be due to heterogeneous presence of resistance mutations at 

disease relapse157.  

 

In retrospective analyses, despite limited concordance rates of EGFR mutation status 

between plasma and tumour samples observed in some studies, response rates for 

patients who were plasma positive for mutations in EGFR were similar to response 

rates of patients who were tissue positive157,164,165,167,169. Data showing the response 

of patients treated solely on the basis of ctDNA analysis are starting to emerge: 

patients who were treated with osimertinib based on detection of EGFRT790M in 

plasma, and had response rates similar to the response rates of patients treated 

based on tissue analysis172. Interestingly, objective responses were also seen in 

patients with very low allele fractions of mutant EGFRT790M in plasma (<0.5%)172.  

 

At present, the European Medicines Agency (EMA) and the US Food and Drug 

Administration (FDA) approve the use of information from ctDNA analysis to help 

select patients with EGFR-mutant NSCLC for gefitinib (EMA)173, erlotinib (FDA)168 or 

osimertinib (EMA and FDA)168,174 therapy in the event that a tumour sample is not 

evaluable. This could offer a pragmatic solution to provide molecular profiling 

information for patients, while avoiding repeat biopsies for some individuals. Current 

recommendations168,174 state that if liquid biopsies are carried out in advance of a 

tumour biopsy, ctDNA detection may abrogate the need for tissue biopsy, but if 

ctDNA analysis is negative, a tissue biopsy may still provide valuable genomic 

information. 

 

Molecular profiling using ctDNA may have particular utility for stratifying patients in 

‘basket trials’, which enrol patients independent of tumour histology, or ‘umbrella 

trials’, which assign patients to multiple investigational drugs or treatment options175. 

For example, a 54-gene panel detected ctDNA in 58% of patients across multiple 

cancer types176. Of the patients with alterations, 71.4% had at least one mutation 

actionable by an FDA-approved drug176. This panel is being used to test the 
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feasibility of matching patients with different metastatic cancer types to targeted 

therapies in a prospective clinical trial177. In another study presented at the 2016 

Molecular Analysis for Personalised Therapy meeting, a 34-gene panel identified 

mutations in 79% of 174 patients with NSCLC, allowing 28 patients (17%) to receive 

personalised treatment based on ctDNA molecular profiling178. Personalised therapy 

selection presents challenges: even if mutations are successfully detected using 

ctDNA in patients, an efficacious molecularly targeted agent may not exist. However, 

data from a prospective clinical trial presented at the 2016 Molecular Analysis for 

Personalised Therapy meeting demonstrated that selecting therapies based on 

genomic analysis can improve outcomes for cancer patients, even when patients with 

well-established actionable targets (for which approved drugs are available) were 

excluded179.  

 

Improvements in the analytical sensitivity of molecular profiling tools could further 

increase detection and concordance rates or allow for sensitive multiplexed analysis 

(Table 1), though biological factors and heterogeneity may reduce sensitivity in some 

cancer types and stages121,157,180. The utility of ctDNA should, therefore, be assessed 

for different clinical indications. However, benchmarking ctDNA against individual 

tumour biopsies may be confounded by sampling error, as rare private mutations 

may be sampled in the biopsy, but release insufficient ctDNA into the bloodstream to 

be detectable.  

 

Structural variants 

Copy number alterations can be detected in cfDNA using WGS38,181–183, amplicon-

based116,184,114, and hybrid-capture approaches40,108,160,185. In patients with 

hepatocellular carcinoma, WGS was able to identify amplifications and deletions in 

plasma matching those identified in tumour tissue38,186. Heterogeneous copy number 

changes were also identified in a patient with synchronous breast and ovarian 

cancers, as copy number changes unique to each cancer were detected in plasma38. 

In a study of 80 patients with prostate cancer, androgen receptor (AR) copy number 

gain prior to abiraterone therapy predicted a worse overall survival, thus identifying 

patients with primary resistance187. For patients with advanced disease, sWGS may 
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provide a relatively cost-effective measure of ctDNA level that is applicable across 

cancer types. This approach may have utility as a sample screening step in a ctDNA 

analysis workflow116, where high-burden patient samples are triaged for exome 

sequencing40. 

 

Chromosomal rearrangements in plasma can be identified through both WGS37 and 

hybrid-capture sequencing approaches39,188, though the latter may be more 

economical due to the depth of coverage needed to confidently identify a 

rearrangement. In one study of patients with prostate cancer, sWGS was able to 

detect a deletion on chromosome 21 in 5 patients, though higher-depth capture 

sequencing was necessary to identify a rearrangement between exon 1 of TMPRSS2 

and exon 3 of ERG39.  

 

Longitudinal monitoring  

Monitoring response 

The short half-life of cfDNA,31,71–73 as well as the ease and reduced risk of repeating 

liquid biopsies relative to imaging50 or tissue biopsies41, enables liquid biopsies to be 

used for real-time monitoring of cancer burden in response to therapy. Studies 

monitoring patients during treatment have shown that ctDNA dynamics correlate with 

treatment response31,35,36,108,126, and may identify response earlier than clinical 

detection36,189,190. In patients with breast cancer, ctDNA showed the greatest range in 

concentration and provided the earliest measure of response to chemotherapies, as 

well as the earliest indication of impending relapse compared to imaging and other 

blood-based cancer markers, such as CTCs and Cancer Antigen 15-3 (CA 15-3, also 

known as MUC1)36. In relapsed ovarian cancer, pre-treatment ctDNA levels and the 

extent of ctDNA decrease after chemotherapy initiation were significantly associated 

with time to progression, and were more informative than levels of CA 125 (also 

known as MUC16) 118.  

 

A recent study suggested that an early spike in ctDNA levels (allele fractions of 

BRAF mutations) in the first week following the initiation of immunotherapy in 

melanoma patients may predict response191. This may reflect a transient increase in 
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cell death. If these data are confirmed, sampling at early time points could be applied 

in the clinic as well as in drug development. However, the presence or timing of such 

spikes in cell death would likely vary based on the pharmacological properties and 

biological responses to treatments used. An early spike was not observed a few days 

after initiation of treatment with chemotherapy for patients with colorectal cancer159 or 

with EGFR inhibitor for patients with NSCLC190. If analysis of plasma immediately 

after the start of therapy could reliably detect the destruction of sensitive cancer cells, 

this raises an exciting possibility that the existence of resistant sub-clones could be 

identified very rapidly through differential early dynamics of mutations. In the context 

of immunotherapy, liquid biopsies may provide the opportunity to monitor both ctDNA 

and the response of the immune system, for example through the analysis of cfDNA 

released from distinct T-cell clones192. 

 

Minimal residual disease and recurrence monitoring 

Following surgery or treatment with curative intent, even in the absence of any other 

clinical evidence of disease, detection of ctDNA may signal the presence of minimal 

residual disease (MRD), which could identify patients who may be at a higher risk of 

relapse. Stratification of patients into high- and low-risk groups would enable 

adjuvant therapy to be given to patients who stand to benefit most, while sparing low-

risk patients from unnecessary comorbidities and risks of adverse events. In a 

prospective study of 230 early-stage colorectal cancer patients, assessment of 

ctDNA at the first follow-up visit after surgical resection indicated that recurrence-free 

survival at 3 years was 0% for the ctDNA-positive and 90% for the ctDNA-negative 

groups193. In a separate study of 55 patients with early-stage breast cancer, 

assessment of ctDNA showed that detection of ctDNA at first follow-up could also 

indicate poor prognosis in early-stage breast cancer194. Furthermore, stratification 

based on mutation detection across serial samples improved prediction of relapse, 

and this and other studies have observed an interval of 7.9-11 months between 

ctDNA detection and clinical relapse194–196, similar to that identified in the metastatic 

setting36. With more sensitive approaches (Fig. 4), earlier identification of clinical 

relapse should be possible. Combining monitoring for known mutations with 

molecular profiling assays could allow identification of potential targets for early 
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therapeutic intervention – ideally, such intervention would, in future, prevent or 

postpone overt relapse. 

 

Patient-specific DNA rearrangements identified from sequencing tumour samples can 

be used to design assays to track tumour burden in plasma196–199. Curative surgery 

could provide an excellent opportunity to obtain tumour DNA that can be sequenced 

to guide the design of assays for post-operative monitoring. Patient-specific 

rearrangements may be more readily detected in ctDNA with high sensitivity197,198, 

since rearrangements are less confounded by background noise. One of the 

challenges of individualised panel design is that sequencing an individual tumour 

biopsy may not sample every mutation in heterogeneous disease; therefore, 

sequencing matched body fluid and tumour samples may be desirable for 

comprehensive mutation profiling. In future, if tumour sequencing becomes routine, 

monitoring disease using patient-specific panels could become viable, although 

regulation of such assays will likely be more complex than fixed panels.  

 

Clonal evolution and resistance  

As discussed above, rising or falling ctDNA concentration may provide an indication 

of treatment effect on overall tumour burden. If multiple tumour mutations are 

interrogated, then the relative change between each may provide insight into 

molecular evolution of the patient’s cancer40,200,201. Ratios between the levels of 

different mutations in plasma can indicate heterogeneity and may be informative to 

predict patient response to treatment targeting particular alterations157,160. Liquid 

biopsies have been shown to contain ctDNA from multiple tumour sites45,47,48,62, and 

their analysis has a faster turnaround time than tissue biopsies39,102,188, and may be 

less prone to biases resulting from the analysis of individual tumour biopsies148,149,202.  

 

Studies demonstrate that ctDNA can monitor clonal evolution and identify resistance 

mechanisms to treatment110,158,160,200,203,204. Serial ctDNA analysis in patients with 

colorectal cancer demonstrated the positive selection of mutant KRAS clones during 

EGFR blockade, which later decline upon the withdrawal of anti-EGFR therapy158,205. 

In patients with NSCLC undergoing treatment with EGFR inhibitors, resistance-
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conferring mutations emerged in plasma ahead of clinical progression170,171. Exome 

sequencing of plasma DNA may identify resistance mechanisms in patients across 

cancer types40, though the sensitivity of exome sequencing currently limits its 

application to advanced cancer patients where ctDNA levels are high (>5% mutant 

allele fraction). Design of patient-specific mutation panels35,48,111,206 could be a more 

cost-effective alternative for high-sensitivity monitoring, though may miss subsequent 

de novo events unless appropriately designed. Serial sWGS analysis also 

demonstrates highly dynamic copy number adaptations in response to selection 

pressures, with a mean interval of 26.4 weeks between new amplifications207.  

  

Serial liquid biopsies may have particular utility for adaptive or reactive therapy, in 

which resistance mutations are prospectively identified, and therapy adapted in real-

time (Fig. 5). In the clinical research setting, non-invasive monitoring could facilitate a 

clinical trials that prospectively identify efficacious treatment regimens or drug 

combinations, and identify resistance mechanisms to novel therapies. In addition, in 

vitro or in vivo experiments carried out in parallel may provide greater insight into 

cancer biology. For example, colorectal cancer cell line experiments carried out in 

parallel with ctDNA analysis showed that resistance mutations may arise from both 

the selection of pre-existing minor clones, and through ongoing mutagenesis200. 

Another study investigating resistance to a pan-tropomyosin-related kinase (TRK, 

also known as NTRK) inhibitor in colorectal cancer demonstrated that simultaneous 

analysis of patient-derived xenografts and liquid biopsies may characterise 

resistance more comprehensively than plasma alone199.  

 

Future directions 

Proof-of-concept studies provide an excellent starting point for larger prospective 

studies into the clinical utility of ctDNA, and demonstrate that ctDNA may be a useful 

research tool for drug development, and for the study of intratumour heterogeneity 

and clonal evolution. Moving forwards, randomised trials comparing ctDNA-guided 

decision-making against the standard of care would be definitive, and the EMA have 

outlined good practice guidelines for the design of such trials208. Trials to test the 

clinical utility of ctDNA analysis for treatment monitoring are now being carried 
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out209,210. In one trial, patients with NSCLC receiving erlotinib are being prospectively 

monitored, and if resistance mutations emerge in plasma, then additional scans to 

search for signs of disease progression would be carried out209. Another clinical trial 

aims to demonstrate the efficacy of targeting mutations identified in plasma from 

patients with advanced breast cancer211, which could support the future use of 

plasma-only mutation profiling and treatment stratification. Together, these studies 

highlight that the field is moving from exploratory ctDNA studies, towards clinical 

trials where ctDNA is guiding decision-making. 

 

A better understanding of the origin and biology of cfDNA and ctDNA would aid the 

implementation of liquid biopsies2. The relative contributions of apoptosis, necrosis 

and active release, particularly at different time points during treatment, should be 

explored. Our limited understanding of the release and clearance mechanisms of 

cfDNA hampers interpretation of current studies. Studies of the dynamics and 

reproducibility of ctDNA measurement in the absence of intervention will become 

increasingly important as we aim to interpret ctDNA signal in response to treatment. 

It is also not clear whether all tumour subclones contribute proportionately to the total 

ctDNA pool, or whether their representation in the bloodstream is biased by other 

biological factors, such as tumour vascularity or metabolic activity. In vivo cellular 

barcoding experiments212 and autopsy studies48 could elucidate the contribution of 

individual subclones, and histological studies may clarify the factors that modulate 

ctDNA release. The differences in size between cfDNA and ctDNA fragments4,68,81,82 

suggest that optimising processing and extraction methods (as well as downstream 

assays) for recovery of selected fragment sizes may provide further improvement to 

overall performance. 

 

While ctDNA can have greater sensitivity and specificity compared to other 

circulating biomarkers36, taking a multi-marker approach may offer a more 

comprehensive insight into a patient’s disease3,119,213. For example, total cfDNA 

concentration correlates with disease status3,5 and is associated with prognosis214. 

Epigenetic analysis of cfDNA may identify cancer gene hypermethylation27,153 or the 

cell-type giving rise to cfDNA fragments66–68, and may provide a window into the 
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tumour microenvironment, which usually lacks somatic mutations. Other circulating 

nucleic acids such as mRNA and microRNA can provide additional layers of 

information215. Targeting multiple types of nucleic acid, with independent 

mechanisms of release, may increase sensitivity for detection of MRD, for example 

through the co-isolation of both exosomal RNA and cfDNA216. Actively released 

nucleic acids may be preferred for the detection of mutations in subclones resistant 

to therapy, whereas fragments arising from dying cells following the initiation of 

therapy may identify treatment-responsive subclones. Next, although it may be 

possible to infer gene expression patterns from cfDNA217, sequencing RNA within 

exosomes218, CTCs219 or platelets220 could provide more direct evidence. Analysis of 

cell-free DNA in plasma alongside other fluids such as urine221 or CSF45 can provide 

complementary information. We further echo the suggestion by Gormally, Hainaut 

and colleagues145, made a decade ago, that characterisation of proteins associated 

with cfDNA may provide a rich source of information on an individual’s disease, and 

the biology of cfDNA. 

 

The clinical uptake of liquid biopsies will depend on the practical advantages for 

patients and clinicians, the infrastructure required, and its cost-effectiveness. Tissue 

biopsies will continue to play a key role in cancer management, particularly for the 

histological diagnosis and classification of cancers. At present, specialised 

laboratories handle CTC and ctDNA samples222, though in future hospital laboratories 

may carry out analysis locally if appropriate processes can be established223. 

 

Point-of-care devices for the identification of individual hotspot mutations with 

clinically meaningful sensitivities are starting to be used for tissue and plasma 

samples224,225. The feasibility of single molecule (third generation) sequencing of 

maternal plasma DNA was first demonstrated in 201586, and subsequently it was 

shown that structural variants in cell line DNA can be detected226. The portability of 

such technologies was demonstrated by the real-time genomic surveillance in the 

field during the Ebola virus disease epidemic227. At present, such platforms are 

limited by a high error rate226, making single nucleotide variant and indel detection 

challenging. Another challenge is that of sequencing short DNA fragments, which 
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requires optimised library preparation methods228. Sequencing capacity is also limited 

(currently to ~150 megabases)229, though this is likely to increase in the near future, 

and specific amplicons may be targeted through real-time selective sequencing230. 

These studies support the possibility of molecular profiling at the point of care, 

especially if blood plasma can be interrogated without the relatively cumbersome and 

time-consuming step of DNA purification87,231. 

 

The initial approvals by the EMA and FDA for mutation detection in plasma as a 

companion diagnostic168,173,174, and emerging ctDNA-guided clinical trials209–211, 

represent key milestones towards the implementation of liquid biopsies in 

personalised oncology. Improving technologies are enabling an ever-wider scope for 

non-invasive molecular analysis of cancer, providing information that opens new 

avenues for genomic research and may aid in clinical decisions. In order to fully 

exploit the potential utility of liquid biopsies, it is essential that the biology of ctDNA 

be explored further. Thus far, liquid biopsies have demonstrated the potential for 

utility across a range of applications, and are beginning to be used for patient benefit. 
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Boxes 

Box 1 - Clinical need for liquid biopsies in oncology  

There are multiple areas of oncology where novel diagnostics may have utility and 

produce clinical benefit.  

• Cancer diagnosis – earlier diagnosis of cancer would enable treatment to be 

initiated sooner, and curative surgery may be carried out if the tumour is 

diagnosed at an early stage. For symptomatic patients, sensitive and specific 

cancer detection may speed up the time to diagnosis and treatment. At a 

population level, pre-symptomatic individuals may be screened for markers of 

disease, enabling early intervention.  

• Prognosis, residual disease and risk of relapse – assessment of risk of 

progression is essential to select the extent or aggressiveness of treatment. 

After treatment with curative intent, the identification of patients with residual 

disease who are at high risk of relapse may be used to stratify patients to 

adjuvant therapy. Effective stratification would also spare low-risk patients 

from overtreatment.  

• Treatment selection – the introduction of a wide array of novel molecularly 

targeted and immunotherapy agents necessitates improved tools for 

molecular profiling of patients and treatment stratification. At present, tumour 

biopsies are the standard for obtaining tumour DNA; these cannot always be 

obtained and their interpretation may be confounded by intratumour 

heterogeneity44–48, which could lead to false negative results and suboptimal 

therapy selection.  

• Monitoring disease burden – treatment monitoring, presently performed 

through imaging or molecular methods, may identify response or progression, 

enabling clinicians and patients to adapt therapy accordingly. Current 

methods have limited accuracy, associated logistical burden or radiation 

exposure50. The ideal monitoring assay should be repeatable serially over 

time, with minimal risk to patients, and should provide an accurate read-out of 

tumour burden. 
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Box 2 – Pre-analytical considerations  

In low-burden disease, or certain cancer types, the concentration of ctDNA molecules 

may be low and any loss of sampled material could reduce the sensitivity of 

molecular profiling. For quantitative applications, reproducibility of measurement is 

essential to achieving a robust result, and so the following pre-analytical factors 

should be considered: 

• Samples should be collected in tubes containing an anticoagulant that is 

compatible with PCR, with EDTA being preferred. Plasma from heparinised blood 

leads to inhibition of PCR232, although some studies have been able to utilise 

such samples33. 

• It is important that the first centrifugation of the blood is done within a few hours 

of the blood draw in order to remove blood cells that may lyse and release 

germline DNA which would dilute ctDNA69,233–236. Tubes containing fixative agents 

may stabilise cells and prevent lysis for several days at room temperature234,236–

239, including during shipping239,240.  

• Following centrifugation, buffy coat DNA from the same tubes can be used as a 

source of germline DNA, although this may contain small or trace amounts of 

ctDNA.  

• From a blood draw, plasma is preferred over serum for ctDNA analysis235. Serum 

also contains ctDNA241, but blood cell lysis during the preparation of serum 

samples could release DNA from non-cancerous cells, which would dilute any 

ctDNA signal. Other body fluids or cytological specimens may be used, and may 

contain a higher amount or concentration of tumour DNA depending on tumour 

proximity (Fig. 3c).  

• cfDNA extraction may be carried out with affinity-column, magnetic bead, 

polymer, phenol-chloroform methods, or by filtration. Different methods show 

variation in their ability to recover particular fragment sizes87,88, which could have 

implications for ctDNA detection, given the differences in size between cfDNA 

and ctDNA. 
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Figures 

 

 

 

Figure 1 | Applications of ctDNA analysis during the course of disease 
management  
(A) A schematic time course for a hypothetical patient who undergoes surgery (or 

other initial treatment) has a disease relapse, and then undergoes systemic 

therapy. The potential applications of liquid biopsies during this patient’s care are 

indicated. The patient starts with one single disease focus, but multiple 

metastases and distinct clones emerge following treatment, depicted in different 

colours. 

(B) The information extracted from ctDNA may be classified, broadly, into 

quantitative information (i.e. tumour burden) or genomic information. 

Quantification of ctDNA at a single time point may allow disease staging and 

prognostication, and genomic analysis can inform selection of targeted therapies. 

Therefore, longitudinal analysis allows the quantitative tracking of tumour burden, 

such as response monitoring; and by comparing genomic profiles over time, 

clonal evolution may be monitored. The whole genome sequencing image was 

kindly provided by Dennis Lo, based on data published by Chan et al.38. 
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Figure 2 | Origins and spectrum of alterations in cell-free DNA 
Cells release cfDNA through a combination of apoptosis, necrosis, and secretion. 

cfDNA can arise from cancerous cells but also from cells in the tumour 

microenvironment, immune cells, or other body organs. In the bloodstream cfDNA 

may exist as either free, or associated with extracellular vesicles such as exosomes2. 

Multiple classes of genetic and epigenetic alterations can be found in cell-free DNA. 

Adapted with permission from Schwarzenbach et al.215. 
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Figure 3 | Current and future paradigms for sensitive detection of ctDNA 
(A) The analysis of cfDNA can range from the interrogation of individual loci, 

to analysing the whole genome (Table 1). Off-the-shelf dPCR assays can 

achieve high sensitivity with a simple workflow, but are limited by a low 

multiplexing capability. Targeted sequencing can allow the interrogation of 

multiple loci with high sensitivity, using methods that suppress 

background noise242. The targeted sequencing image is modified with 

permission from Forshew et al.35 and the whole genome sequencing 

image was kindly provided by Dennis Lo, based on data published by 

Chan et al.38.  

(B) In molecular barcoding, unique molecular sequences are added to each 

molecule during library preparation so that sequencing reads originating 

from the same starting molecule can be identified. By comparing all reads 

from the same molecule, a single consensus sequence can be taken, 

which can suppress errors arising from PCR or sequencing. 

(C) To improve sensitivity of analysis, for example for disease diagnosis or 

detection of MRD, other body fluids may be considered in combination 

with, or instead of, plasma. Sampling of body fluids or cytological 

specimens proximal to the tumour site may yield a higher concentration of 

DNA of tumour origin.  
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(D) ctDNA has been shown to be shorter than cfDNA4,81,82,85. Thus, selection 

of shorter fragments experimentally or in silico may enrich for sequences 

of cancer origin82 and can improve sensitivity for samples with low 

fractions of ctDNA. 
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Figure 4 | Leveraging multiple mutations to detect low-burden disease and 
overcome sampling noise  
Even with a perfectly sensitive assay, the probability of detection of ctDNA decreases 

as ctDNA concentration declines, as any single mutation of interest may not be 

present in a given volume of sample. At low ctDNA concentrations, due to sampling 

error, some mutations will be detected while others are missed. Sampling multiple 

pre-specified mutations in each reaction may improve detection of low levels of 

ctDNA, since every target provides an independent opportunity to test for the 

presence of a mutant molecule in the set of DNA molecules at that locus35,111. 

Sensitivity can be further improved by analysis of multiple replicates, with few 

molecules each, so that the mutant allele, where present in a reaction, will constitute 

a large fraction of the DNA template113. Boxes below the graph show hypothetical 

examples of sets of molecules that may be captured by each replicate in the analysis 

of a sample. 
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Figure 5 | Adaptive or reactive treatment paradigms using liquid biopsies  
(A) During systemic anti-cancer therapy, serial liquid biopsies may identify 

biochemical response or progression. If progression is identified, the clinician 

may be able to switch therapy, or select a therapy to target arising clones 

carrying additional mutations that were identified by this analysis.  
(B)  This adaptive or reactive monitoring and treatment may continue as a loop, 

which would be facilitated by a fast turnaround time for ctDNA analyses, for 

example through the use of point-of-care diagnostics. The timeframes for this 

analysis can vary between hours and months; the former could allow analysis 

of early kinetics in response to therapy. 
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Tables 
Table 1 | Comparison and utility of technology platforms for ctDNA analysis 
 

Scale of 
analysis 

Example technologies Loci 
interrogated  

Indicative limit of 
detection (mutant 
allele fraction or 
concentration) 

Clinical utility 

Single-
locus or 
multiplexed 
assays  

PCR-based: 
• Digital PCR28,32,101,243 
• BEAMing29,30 
• Intplex3,119 

 
 
 
Enrichment for mutant alleles: 

• COLD-PCR105 
• SCODA244,245 
• NaME-PrO104 

 

• 1 to 10 loci 
• Both ctDNA and 
cfDNA (IntPlex) 
 
 
 
 
 
• 10-100 loci  

Varies by method, 
optimal 
implementations can 
reach sensitivity of 
0.001%-0.01% or  
individual mutant 
copies/ml30,119,243,246 
 

• Detection and 
quantification of 
recurrent hotspot 
mutations 

• Monitoring for 
recurrent resistance 
mutations 

• Rapid turnaround time 

Allele-specific or ARMS-PCR 
kits for companion diagnostics 
(CDx): 
 

• cobas EGFR168 
 
 

• therascreen EGFR166 
 

 
 
 
7 mutation assays 
covering multiple 
variants 
 
3 mutation assays 
covering multiple 
variants 

Limit of detection 
(≥95% sensitivity): 
 
25-100 copies/ml168 
 
 
 
Median 1.42% 
(range 0.05%-
12.47% for different 
variants)166 

Approved for in vitro 
diagnostic (IVD) use: 
 

• FDA-approved 
 
 
 

• CE-marked 

Targeted 
sequencing 
approaches  

Amplicon-based: 
• TAm-Seq35  
• Enhanced TAm-Seq114 
• Safe-SeqS112 

 
Hybrid capture-based: 

• Exome sequencing40 
• CAPP-Seq108,111 
• Digital 

Sequencing109,115,185 

10 kilobases to 50 
megabases 

<0.01%-0.5% for 
purpose-built 
panels35,109,111,112,176,1

14  
 
1% for off-the-shelf 
multiplexed 
panels46,110.  
 
5% for exome 
sequencing40 

• Profiling gene panels 
• Monitoring for de novo 

resistance mutations. 
• Monitoring clonal 

evolution in response 
to therapy.  

• Sensitivity for disease 
burden can be 
increased by testing 
multiple loci in parallel 
(Fig. 4) 

Genome-
wide  

WGS: 
• Plasma-Seq39 
• PARE197 

 
Amplicon-based: 

• FAST-SeqS184 
• mFAST-SeqS116 

3.2 gigabases 
(whole genome) 
 
 
21.6 unique 
kilobases of LINE-
1184 
 
 

5%-10%39 • Identification of 
structural variants 

• Stratification of patient 
samples based on 
disease burden 

• Detecting the 
presence of 
chromosomal 
aberrations 
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Table 1 | Abbreviations used: BEAMing, beads, emulsion, amplification, and 

magnetics; CAPP-Seq, cancer personalized profiling by deep sequencing; COLD-

PCR, co-amplification at lower denaturation temperature PCR; FAST-SeqS, fast 

aneuploidy screening test-sequencing system; LINE-1, long interspersed nucleotide 

element-1; mFAST-SeqS, modified fast aneuploidy screening test-sequencing 

system; NaME-PrO, nuclease-assisted minor-allele enrichment with probe-overlap; 

PARE, personalized analysis of rearranged ends; SCODA, synchronous coefficient 

of drag alteration; TAm-Seq, tagged amplicon deep sequencing  
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Glossary  

Liquid biopsy – analysis of tumour material (e.g. cells or nucleic acids) obtained in a 

minimally or non-invasive manner, through sampling of blood or other body fluids. 

 

Hybrid-capture sequencing – DNA sequencing of kilobases to megabases of the genome, 

in which DNA to be sequenced is selected using complementary oligonucleotide baits that 

hybridise to the target DNA. The DNA is then captured in solution, commonly through binding 

to magnetic beads.  

 

Limit of detection – The threshold below which mutations cannot be confidently 

discriminated from background noise; for sequencing-based approaches, this is often 

determined by technical artefacts such as PCR or sequencing errors.  

 

Stem mutations – Mutations that occur early in a cancer’s development and are present in 

all cells. 

 

Private mutations – Mutations that are present only in a specific region of a tumour, or in a 

subset of cells, due to intratumour heterogeneity.  

 

Molecular barcoding – Unique molecular sequences that are added to each molecule when 

creating a sequencing library, so that reads originating from the same molecule may be 

identified and the consensus taken, correcting for some PCR or sequencing errors.  
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Mutant allele fraction – the proportion of mutant DNA fragments at a given locus. 

 

Mutant allele concentration – the number of mutant DNA fragments at a given locus, per 

unit volume. 

 

Digital PCR - Many micro-litre or nano-litre scale PCR reactions are run in parallel within 

physically separated reaction chambers, or droplets in an emulsion (droplet dPCR, ddPCR). 

By partitioning molecules into hundreds or up to millions of reactions, rare mutant molecules 

may be accurately identified and quantified. 

 

Targeted Sequencing – massively parallel (next generation) sequencing that uses methods 

such as PCR amplification or hybrid capture to focus on a subset of the genome, which can 

range from few genes or mutation loci, to large fractions of the genome such as the entire 

exome. Smaller panels yield higher sequencing depth at lower costs. 
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