548 research outputs found

    Risk factors for Group B Streptococcus colonisation and disease in Gambian women and their infants.

    Get PDF
    OBJECTIVES: To determine risk factors for GBS colonisation in Gambian mothers and in their infants from birth to day 60-89 of age. METHODS: Swabs and breastmilk from mothers/infant pairs were collected and cultured on selective agar. Negative samples were analysed for GBS DNA via real-time PCR. Positive isolates were serotyped using multiplex PCR and gel-agarose electrophoresis. RESULTS: Seven hundred and fifty women/infant pairs were recruited. 253 women (33.7%) were GBS-colonised at delivery. The predominant serotypes were: V (55%), II (16%), III (10%), Ia (8%) and Ib (8%). 186 infants were colonised (24.8%) at birth, 181 (24.1%) at 6 days and 96 at day 60-89 (14%). Infants born before 34 weeks of gestation and to women with rectovaginal and breastmilk colonisation at delivery had increased odds of GBS colonisation at birth. Season of birth was associated with increased odds of persistent infant GBS colonisation (dry season vs. wet season AOR 2.9; 95% CI 1.6-5.2). CONCLUSION: GBS colonisation is common in Gambian women at delivery and in their infants to day 60-89 and is dominated by serotype V. In addition to maternal colonisation, breastmilk and season of birth are important risk factors for infant GBS colonisation

    How does Inflation Depend Upon the Nature of Fluids Filling Up the Universe in Brane World Scenario

    Full text link
    By constructing different parameters which are able to give us the information about our universe during inflation,(specially at the start and the end of the inflationary universe) a brief idea of brane world inflation is given in this work. What will be the size of the universe at the end of inflation,i.e.,how many times will it grow than today's size is been speculated and analysed thereafter. Different kinds of fluids are taken to be the matter inside the brane. It is observed that in the case of highly positive pressure grower gas like polytropic,the size of the universe at the end of inflation is comparitively smaller. Whereas for negative pressure creators (like chaplygin gas) this size is much bigger. Except thse two cases, inflation has been studied for barotropic fluid and linear redshift parametrization ω(z)=ω0+ω1z\omega(z) = \omega_{0} + \omega_{1} z too. For them the size of the universe after inflation is much more high. We also have seen that this size does not depend upon the potential energy at the end of the inflation. On the contrary, there is a high impact of the initial potential energy upon the size of inflation.Comment: 20 page

    Performance of prototypes for the ALICE electromagnetic calorimeter

    Full text link
    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×44\times4 array of final design modules showed an energy resolution of about 11% /E(GeV)\sqrt{E(\mathrm{GeV})} ⊕\oplus 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm ⊕\oplus 5.3 mm /E(GeV)\sqrt{E \mathrm{(GeV)}}. For an electron identification efficiency of 90% a hadron rejection factor of >600>600 was obtained.Comment: 10 pages, 10 figure

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v
    • 

    corecore