136 research outputs found

    Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of Radiation Therapy Oncology Group-Recursive Partitioning Analysis in the IMRT and temozolomide era

    Get PDF
    Since the development of the Radiation Therapy Oncology Group-Recursive Partitioning Analysis (RTOG-RPA) risk classes for high-grade glioma, radiation therapy in combination with temozolomide (TMZ) has become standard care. While this combination has improved survival, the prognosis remains poor in the majority of patients. Therefore, strong interest in high-grade gliomas from basic research to clinical trials persists. We sought to evaluate whether the current RTOG-RPA retains prognostic significance in the TMZ era or alternatively, if modifications better prognosticate the optimal selection of patients with similar baseline prognosis for future clinical protocols. The records of 159 patients with newly-diagnosed glioblastoma (GBM, WHO grade IV) or anaplastic astrocytoma (AA, WHO grade III) were reviewed. Patients were treated with intensity-modulated radiation therapy (IMRT) and concurrent followed by adjuvant TMZ (n = 154) or adjuvant TMZ only (n = 5). The primary endpoint was overall survival. Three separate analyses were performed: (1) application of RTOG-RPA to the study cohort and calculation of subsequent survival curves, (2) fit a new tree model with the same predictors in RTOG-RPA, and (3) fit a new tree model with an expanded predictor set. All analyses used a regression tree analysis with a survival outcome fit to formulate new risk classes. Overall median survival was 14.9 months. Using the RTOG-RPA, the six classes retained their relative prognostic significance and overall ordering, with the corresponding survival distributions significantly different from each other (P < 0.01, χ2 statistic = 70). New recursive partitioning limited to the predictors in RTOG-RPA defined four risk groups based on Karnofsky Performance Status (KPS), histology, age, length of neurologic symptoms, and mental status. Analysis across the expanded predictors defined six risk classes, including the same five variables plus tumor location, tobacco use, and hospitalization during radiation therapy. Patients with excellent functional status, AA, and frontal lobe tumors had the best prognosis. For patients with newly-diagnosed high-grade gliomas, RTOG-RPA classes retained prognostic significance in patients treated with TMZ and IMRT. In contrast to RTOG-RPA, in our modified RPA model, KPS rather than age represented the initial split. New recursive partitioning identified potential modifications to RTOG-RPA that should be further explored with a larger data set

    Protein 4.1B Contributes to the Organization of Peripheral Myelinated Axons

    Get PDF
    Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. βII spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber

    Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery

    Get PDF
    Survival of glioblastoma patients has been linked to the completeness of surgical resection. Available data, however, were generated with adjuvant radiotherapy. Data confirming that extensive cytoreduction remains beneficial to patients treated with the current standard, concomitant temozolomide radiochemotherapy, are limited. We therefore analyzed the efficacy of radiochemotherapy for patients with little or no residual tumor after surgery. In this prospective, non-interventional multicenter cohort study, entry criteria were histological diagnosis of glioblastoma, small enhancing or no residual tumor on post-operative MRI, and intended temozolomide radiochemotherapy. The primary study objective was progression-free survival; secondary study objectives were survival and toxicity. Furthermore, the prognostic value of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was investigated in a subgroup of patients. One-hundred and eighty patients were enrolled. Fourteen were excluded by patient request or failure to initiate radiochemotherapy. Twenty-three patients had non-evaluable post-operative imaging. Thus, 143 patients qualified for analysis, with 107 patients having residual tumor diameters ≤1.5 cm. Median follow-up was 24.0 months. Median survival or patients without residual enhancing tumor exceeded the follow-up period. Median survival was 16.9 months for 32 patients with residual tumor diameters >0 to ≤1.5 cm (95% CI: 13.3–20.5, p = 0.039), and 13.9 months (10.3–17.5, overall p < 0.001) for 36 patients with residual tumor diameters >1.5 cm. Patient age at diagnosis and extent of resection were independently associated with survival. Patients with MGMT promoter methylated tumors and complete resection made the best prognosis. Completeness of resection acts synergistically with concomitant and adjuvant radiochemotherapy, especially in patients with MGMT promoter methylation

    Search for the standard model Higgs boson at LEP

    Get PDF

    Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo

    Get PDF
    Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells

    The node of Ranvier in CNS pathology

    Get PDF

    Control of the induction of type I interferon by Peste des petits ruminants virus.

    Get PDF
    Peste des petits ruminants virus (PPRV) is a morbillivirus that produces clinical disease in goats and sheep. We have studied the induction of interferon-β (IFN-β) following infection of cultured cells with wild-type and vaccine strains of PPRV, and the effects of such infection with PPRV on the induction of IFN-β through both MDA-5 and RIG-I mediated pathways. Using both reporter assays and direct measurement of IFN-β mRNA, we have found that PPRV infection induces IFN-β only weakly and transiently, and the virus can actively block the induction of IFN-β. We have also generated mutant PPRV that lack expression of either of the viral accessory proteins (V&C) to characterize the role of these proteins in IFN-β induction during virus infection. Both PPRV_ΔV and PPRV_ΔC were defective in growth in cell culture, although in different ways. While the PPRV V protein bound to MDA-5 and, to a lesser extent, RIG-I, and over-expression of the V protein inhibited both IFN-β induction pathways, PPRV lacking V protein expression can still block IFN-β induction. In contrast, PPRV C bound to neither MDA-5 nor RIG-I, but PPRV lacking C protein expression lost the ability to block both MDA-5 and RIG-I mediated activation of IFN-β. These results shed new light on the inhibition of the induction of IFN-β by PPRV

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    ABC Transporter Pdr10 Regulates the Membrane Microenvironment of Pdr12 in Saccharomyces cerevisiae

    Get PDF
    The eukaryotic plasma membrane exhibits both asymmetric distribution of lipids between the inner and the outer leaflet and lateral segregation of membrane components within the plane of the bilayer. In budding yeast (Saccharomyces cerevisiae), maintenance of leaflet asymmetry requires P-type ATPases, which are proposed to act as inward-directed lipid translocases (Dnf1, Dnf2, and the associated protein Lem3), and ATP-binding cassette (ABC) transporters, which are proposed to act as outward-directed lipid translocases (Pdr5 and Yor1). The S. cerevisiae genome encodes two other Pdr5-related ABC transporters: Pdr10 (67% identity) and Pdr15 (75% identity). We report the first analysis of Pdr10 localization and function. A Pdr10-GFP chimera was located in discrete puncta in the plasma membrane and was found in the detergent-resistant membrane fraction. Compared to control cells, a pdr10∆ mutant was resistant to sorbate but hypersensitive to the chitin-binding agent Calcofluor White. Calcofluor sensitivity was attributable to a partial defect in endocytosis of the chitin synthase Chs3, while sorbate resistance was attributable to accumulation of a higher than normal level of the sorbate exporter Pdr12. Epistasis analysis indicated that Pdr10 function requires Pdr5, Pdr12, Lem3, and mature sphingolipids. Strikingly, Pdr12 was shifted to the detergent-resistant membrane fraction in pdr10∆ cells. Pdr10 therefore acts as a negative regulator for incorporation of Pdr12 into detergent-resistant membranes, a novel role for members of the ABC transporter superfamily
    corecore