34 research outputs found

    Network analysis of an in vitro model of androgen-resistance in prostate cancer

    Get PDF
    BACKGROUND: The development of androgen resistance is a major limitation to androgen deprivation treatment in prostate cancer. We have developed an in vitro model of androgen-resistance to characterise molecular changes occurring as androgen resistance evolves over time. Our aim is to understand biological network profiles of transcriptomic changes occurring during the transition to androgen-resistance and to validate these changes between our in vitro model and clinical datasets (paired samples before and after androgen-deprivation therapy of patients with advanced prostate cancer). METHODS: We established an androgen-independent subline from LNCaP cells by prolonged exposure to androgen-deprivation. We examined phenotypic profiles and performed RNA-sequencing. The reads generated were compared to human clinical samples and were analysed using differential expression, pathway analysis and protein-protein interaction networks. RESULTS: After 24 weeks of androgen-deprivation, LNCaP cells had increased proliferative and invasive behaviour compared to parental LNCaP, and its growth was no longer responsive to androgen. We identified key genes and pathways that overlap between our cell line and clinical RNA sequencing datasets and analysed the overlapping protein-protein interaction network that shared the same pattern of behaviour in both datasets. Mechanisms bypassing androgen receptor signalling pathways are significantly enriched. Several steroid hormone receptors are differentially expressed in both datasets. In particular, the progesterone receptor is significantly differentially expressed and is part of the interaction network disrupted in both datasets. Other signalling pathways commonly altered in prostate cancer, MAPK and PI3K-Akt pathways, are significantly enriched in both datasets. CONCLUSIONS: The overlap between the human and cell-line differential expression profiles and protein networks was statistically significant showing that the cell-line model reproduces molecular patterns observed in clinical castrate resistant prostate cancer samples, making this cell line a useful tool in understanding castrate resistant prostate cancer. Pathway analysis revealed similar patterns of enriched pathways from differentially expressed genes of both human clinical and cell line datasets. Our analysis revealed several potential mechanisms and network interactions, including cooperative behaviours of other nuclear receptors, in particular the subfamily of steroid hormone receptors such as PGR and alteration to gene expression in both the MAPK and PI3K-Akt signalling pathways

    Additional file 1: of Network analysis of an in vitro model of androgen-resistance in prostate cancer

    No full text
    Table S1.  Top 15 pathways for the human differentially expressed genes. Table S2. Top 15 pathways for the cell line deferentially expressed genes. Figure S1. Differencially expressed cell line genes overlaid on KEGG hsa04010 MAPK signaling pathway. Figure S2. Differentially expressed cell line genes overlaid on KEGG hsa04151 PI3K-Akt signaling pathway-Homo sapiens (human). Figure S3. Differentially expressed human tumour genes overlaid on KEGG hsa04010 MAPK signaling pathway. Figure S4. Differentially expressed human tumour genes overlaid on KEGG hsa04151 PI3K-Akt signaling pathway-Homo sapiens (human). (PDF 460 kb

    CD151 is associated with prostate cancer cell invasion and lymphangiogenesis in vivo

    Get PDF
    CD151, a member of the tetraspanin family, is associated with regulation of migration of normal and tumour cells via cell surface microdomain formation. CD151 was found in our laboratory to have a prognostic value in prostate cancer and is a promoter of prostate cancer migration and invasion. These roles involve association with integrins on both cell-cell and cell-stroma levels. Furthermore, CD151 plays a role in endothelial cell motility. CD151 expression was examined in three commonly used prostate cancer cell lines. We investigated CD151 expression, angiogenesis (microvessel density; MVD) and lymphangiogenesis (lymphatic vessel density; LVD) in an orthotopic xenograft model of prostate cancer in matched tumours from primary and secondary sites. CD151 was found to be heterogeneously expressed across different prostate cancer cell lines and the levels of CD151 expression were significantly higher in the highly tumorigenic, androgen-insensitive cells PC-3 and DU-145 compared to the androgen-sensitive cell line LNCaP (P<0.05). The majority of in vivo xenografts developed pelvic lymph node metastases. Importantly, primary tumours that developed metastasis had significantly higher CD151 expression and MVD compared to those which did not develop metastasis (P<0.05). We identified, for the first time, that CD151 expression is associated with LVD in prostate cancer. These findings underscore the potential role of CD151 and angiogenesis in the metastatic potential of prostate cancer. CD151 has a prognostic value in this mouse model of prostate cancer and may play a role in lymphangiogenesis. CD151 is likely an important regulator of cancer cell communication with the surrounding microenvironment
    corecore